Lecture 9: Privacy-Enhancing Technologies-3 -Secure Multiparty Computation

COMP 6712 Advanced Security and Privacy
Haiyang Xue
haiyang.xue@polyu.edu.hk
2023/3/18

Roadmap

- Recall zero-knowledge proof
- Introduction to Secure Multiparty computation (MPC)
- Yao's Garbled Circuits and GMW protocol
- Practical MPC: Private Set Intersection

Recall: Zero-knowledge proof

- Identification protocol and signature
- Sigma protocol
- Zero-knowledge proof
- Non-interactive ZKP
- zkSNARK

Schnorr Identification

$$
\begin{aligned}
& u=g^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{\mathrm{z}} \leftarrow \alpha_{\mathrm{t}}+\alpha c \bmod q \\
& \xrightarrow{\alpha_{z}} \\
& g^{\alpha_{z}} \stackrel{?}{=} u_{\mathrm{t}} \cdot u^{c}
\end{aligned}
$$

- Challenge space $\mathcal{C}=Z_{q}$
- Conversation: $\left(u_{t}, c, \alpha_{z}\right)$ is said to be valid if the verification passes

Schnorr Identification

$$
\begin{aligned}
& \alpha_{\mathrm{t}} \leftarrow^{\mathbb{R}} \frac{P(\alpha)}{\mathbb{Z}_{q}, u_{\mathrm{t}}} \leftarrow g^{\alpha_{\mathrm{t}}} \xrightarrow{u_{\mathrm{t}}} \xrightarrow{u=g^{\alpha}} \begin{array}{c}
\underline{V(u)} \\
\\
\end{array} \\
& \alpha_{z} \leftarrow \alpha_{\mathrm{t}}+\alpha c \bmod q \\
& \alpha_{z} \\
& g^{\alpha_{z}} \stackrel{?}{=} u_{\mathrm{t}} \cdot u^{c}
\end{aligned}
$$

- Correctness(Completeness): If P and V execute the protocol honestly, the proof is accepted.
- Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) α
- Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

Identification for Decisional Diffie-Hellman $I D_{D D H}$

$$
\begin{aligned}
& v=g^{\beta}, w=u^{\beta}
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{\mathrm{z}} \leftarrow \beta_{\mathrm{t}}+\beta c \bmod q \\
& g^{\beta_{z}} \stackrel{?}{=} v_{\mathrm{t}} \cdot v^{c} \text { and } u^{\beta_{z}} \stackrel{?}{=} w_{t} \cdot w^{c}
\end{aligned}
$$

Given $\left(g, u, v=g^{\beta}, w=u^{\beta}\right)$ with witness β, P wants to prove that it knows β

Identification for Decisional Diffie-Hellman (DDH)

Given $\left(g, u, v=g^{\beta}, w=u^{\beta}\right)$ with witness β, P wants to prove that it knows β

$$
v=g^{\beta}, w=u^{\beta}
$$

$$
\begin{aligned}
& \beta_{\mathrm{t}} \mathbb{R}^{\mathbb{R}} \frac{P(\beta,(u, v, w))}{\mathbb{Z}_{q}, v_{\mathrm{t}} \leftarrow g^{\beta_{\mathrm{t}}}, w_{\mathrm{t}}} \leftarrow u^{\beta_{\mathrm{t}}} \\
& \underline{V(u, v, w)} \\
& c \stackrel{\mathbb{R}}{\leftarrow} \mathcal{C} \\
& \beta_{\mathrm{z}} \leftarrow \beta_{\mathrm{t}}+\beta c \bmod q \\
& g^{\beta_{z}} \stackrel{?}{=} v_{\mathrm{t}} \cdot v^{c} \text { and } u^{\beta_{z}} \stackrel{?}{=} w_{\mathrm{t}} \cdot w^{c}
\end{aligned}
$$

- Correctness(Completeness): If P and V exact the protocol honestly, the proof is accepted.
- Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) α
- Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

$$
\beta_{z} \leftarrow Z_{q}, c \leftarrow Z_{q}, v_{t}=\frac{g^{\beta_{z}}}{v^{c}}, u_{t}=g^{\beta_{z}} / u^{c}
$$

Assignment 2

- Task 1: zero knowledge proof for that
- $\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)=\left(\mathrm{g}^{\beta}, \mathrm{u}^{\beta} \cdot \mathrm{g}^{1}\right)$ and $\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)=\left(\mathrm{g}^{\gamma}, \mathrm{u}^{\gamma} \cdot \mathrm{g}^{0}\right)$ are the encryption of 1 and 0 respectively
- Hint: use the proof for DDH tuple
- Task 2: Implement the proof
- Write a report about this
- submit via Blackboard, Deadline: 10 Apr. 11:00 pm

Multiparty Computation (MPC)

Our aim

1 secure computation: Concepts \& definitions
2 General constructions: Yao's protocol, and GMW
3 Custom protocol: private set intersection

Secure computation examples: Millionaires Problem

Whose value is greater?

- Alice has money x
- Bob has money y
- $X>y$ or not (but do not want to leak x or y to each other)

Secure computation examples: Sugar Bidding

Farmers

Purchaser

- Farmers make bids ("at price X, I will produce Y amount")
- Purchaser bids ("at price X, I will buy Y amount")
- Market clearing price (MCP): price at which total supply = demand

Secure computation examples: voting

- Secure electronic voting is simply computation of the addition function

Secure computation examples: Distribute signature

- Distribute (ECDSA) signature
- Split the secret signing key into several parts
- such that only they work together can generate the final signature

Secure computation examples：Ad conversion

Ad impressions		In－store purchases	
alice＠gmail．com		albert＠gmail．com	\＄80K
bob＠gmail．com		bob＠gmail．com	\＄160K
charlie＠gmail．com		caroline＠gmail．com	\＄99K
dianne＠gmail．com		edwin＠gmail．com	\＄99k
edwin＠gmail．com		felipe＠gmail．com	\＄85K
frank＠gmail．com	Tミらレ̄	frank＠gmail．com	\＄77K
gina＠gmail．com		hilda＠gmail．com	\＄113K

SELECT SUM（amount）
FROM ads，purchases
WHERE ads．email＝purchases．email
－Computed with secure computation by Google and its customers

Secure computation

Premise:

- Mutually distrusting parties, each with a private input
- Learn the result of agreed-upon computation
- E.g, Millionaires Problem, sugar bidding, Ad conversion...
- Security
- Privacy ("learn no more than" prescribed output)
- Input independence
- Etc...

Two or more parties want to perform some joint computation, while guaranteeing "security" against "adversarial behavior".

What does it mean to "security" when computing f?
Or How do we define security here?

Consider a secure secret Sugar bidding

- An adversary may wish to learn the bids of all parties - to prevent this, require PRIVACY
- An adversary may wish to win with a lower bid- to prevent this, require CORRECTNESS
- But, the adversary may also wish to ensure that it always gives the highest bid - to prevent this, require INDEPENDENCE OF INPUTS
- An adversary may try to abort the execution if its bid is not the highest require FAIRNESS

General security requirement

- Privacy: only the output is revealed
- Correctness: the function is computed correctly
- Independence of inputs: parties cannot choose inputs based on others' inputs
- Fairness: if one party receives output, all receive output

Defining security

- Option 1: analyze security concerns for each specific problem
- Bidding: as in previous slide
- E-voting: privacy, correctness and fairness only?
- Problems:
- How do we know that all concerns are covered?
- Definitions are application dependent and need to be redefined from scratch for each task

Defining security

- Option 2: general definition that captures all (most) secure computation tasks
- Properties of any such definition
- Well-defined adversary model
- Well-defined execution setting
- Security guarantees are clear and simple to understand
- How???

Defining security: ideal world

- What can a corrupt party do in this ideal world?
- Choose any input y (independent of x)
- Learn only $f(x, y)$, and nothing more
- Cause honest party to learn $f(x, y)$

Real-ideal paradigm [GoldwasserMicali84]

Security goal: real protocol interaction is as secure as the ideal-world interaction

For every "attack" against real protocol, there is a way to achieve "same effect" in ideal world

What is the "effect" of a generic attack?

- Something the adversary learns / can compute about honest party
- Some influence on honest party's output

Define Security

Security definition: For every real-world adversary A, there exists an ideal adversary A' s.t. joint distribution (HonestOutput, AdvOutput) is indistinguishable

Define Security

Security definition: For every real-world adversary A, there exists an ideal adversary A' s.t. joint distribution (HonestOutput, AdvOutput) is indistinguishable

WLOG: \exists simulator that simulates real-world interaction in ideal world

Define Security

WLOG: \exists simulator that simulates real-world interaction in ideal world

Rule of Simulator

1. Send protocol messages that look like they came from honest party

- Demonstrates that honest party's messages leak no more than $f(x, y)$

2. Extract an f-input by examining adversary's protocol message - "Explains" the effect on honest party's output in terms of ideal world

Modeling of adversary

- Adversarial behavior
- Semi-honest: follows the protocol specification

Tries to learn more than allowed by inspecting transcript

- Malicious: follows any arbitrary strategy
- Adversarial power
- Polynomial-time
- Computationally unbounded: information-theoretic security

Function: Yao's Millionaires' Problem

$$
F(x, y)= \begin{cases}(0,1), & x<y \\ (1,0), & x \geq y\end{cases}
$$

Function: Zero-knowledge proof (or SIGMA protocol)

A NP language $L:=\{y \mid \exists x$, s.t. $(x, y) \in R\} \quad$ Corresponding Relation R

- Prover with input (x, y) wants to prove that it knows x such that $y \in L$

$$
F((y, x), y)=(-, b), b=1 \text { if }(x, y) \in R
$$

Schnorr Identification

$$
\begin{aligned}
& u=g^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c } \\
& \alpha_{\mathrm{z}} \leftarrow \alpha_{\mathrm{t}}+\alpha c \bmod q \\
& g^{\alpha_{z}} \stackrel{?}{=} u_{\mathrm{t}} \cdot u^{c}
\end{aligned}
$$

- Correctness(Completeness): If P and V execute the protocol honestly, the proof is accepted.

If Prover is an adversary of-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) α

- Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

Function: Zero-knowledge proof (or SIGMA protocol)

A NP language $L:=\{y \mid \exists x$, s.t. $(x, y) \in R\} \quad$ Corresponding Relation R

- Prover with input (x, y) wants to prove that it knows x such that $y \in L$

$$
F((y, x), y)=(-, b), b=1 \text { if }(x, y) \in R
$$

- If Prover is the adversary: View is simple; we can extract 'Prover's input according to Soundness (proof-of-knowledge):
- If verifier is a Honest adversary: we can simulate the view according to Honest verifier zero-knowledge

Basic tool: Oblivious Transfer (OT)

Sender S receiver R

It is theoretically equivalent to MPC as shown by Kilian (1988):

- Given OT, one can build MPC without any additional assumptions
- Similarly, one can directly obtain OT from MPC

Oblivious Transfer (OT)

- The standard definition of 1-out-of-2 OT involves two parties, a Sender S holding two secrets $\mathrm{m}_{0}, \mathrm{~m}_{1}$, and a receiver R holding a choice bit $\mathrm{b} \in\{0$, 1\}
- OT is a protocol allowing R to obtain m_{b} while learning nothing about the "other" secret m_{1-b}
- At the same time, S does not learn anything at all

How to construct OT?

- Semi-honest

Need public-key encryption that supports blind key generation:

- sample a public key without knowledge of the secret key
- E.g.: ElGamal

Function for OT

- A 1-out-of-2 OT is a cryptographic protocol securely implementing the functionality $F^{O T}$ defined below:
- Parameters:

Two parties: Sender S and Receiver R.
S has input secrets m_{0}, m_{1} and R has a selection bit $b \in\{0,1\}$

Functionality $F^{O T}$:
S sends $\mathrm{m}_{0}, \mathrm{~m}_{1}$ to $F^{O T}$, and R sends b to $F^{O T}$
R receives m_{b}, and S receives \perp

Timetable: MPC

1976	1977	1978	1982	1985
New directions	RSA	Homomorphic Enc	MPC	Zero Knowledge

History of MPC

- The idea of secure computation was introduced by Andrew Yao in the early 1980s (Yao, 1982)
- Secure computation was primarily of only theoretical interest for the next twenty years
- In the early 2000s, algorithmic improvements and computing costs make it more realistic to build practical systems, e.g. Fairplay (Malkhi et al., 2004)
- Since then, the speed of MPC protocols has improved by more than five orders of magnitude

Our step

1 secure computation: Concepts \& definitions
2 General constructions: Yao's protocol, and GMW
3 custom protocol: private set intersection

First: Two-party computation

- Every computation of function could be transferred to computing a Boolean circuit.
- Yao's protocol: semi-honest secure (2-party) computation for Boolean circuits

Before we start,

, so we focus on semi-honest case

Malicious secure MPC for any circuit

GMW compiler [GMW87]

Commitment
Zero-knowledge proof

Semi-honest secure MPC for any circuit

Goldreich-Micali-Wigderson (GMW)
Yao etc.
[GMW87]Goldreich, O., S. Micali, and A. Wigderson. 1987. "How to Play any Mental Game or A Completeness

Yao's Garble Circuit (two-party, Boolean)

- Take AND gate for example
- $F(u, v)=(w, w)$

\mathbf{u}	\mathbf{v}	\mathbf{w}
0	0	0
0	1	0
1	0	0
1	1	1

Yao's Garble Circuit (two-party, Boolean)

- $F(u, v)=(w, w)$
$\mathrm{E}_{k_{1}}\left(E_{k_{2}}(m)\right)$ is the double AES enc of m with k_{1} and k_{2}

u	v	w
$\mathrm{k}_{\mathrm{u}}^{0}$	$\mathrm{k}_{\mathrm{v}}^{0}$	$\mathrm{E}_{\mathrm{k}_{\mathrm{u}}^{0}}\left(\mathrm{E}_{\mathrm{k}_{\mathrm{v}}^{0}}\left(\mathrm{k}_{\mathrm{w}}^{0}\right)\right)$
$\mathrm{k}_{\mathrm{u}}^{0}$	$\mathrm{k}_{\mathrm{v}}^{1}$	$\mathrm{E}_{\mathrm{k}_{\mathrm{u}}^{0}}\left(\mathrm{E}_{\mathrm{k}_{\mathrm{v}}^{\prime}}\left(\mathrm{k}_{\mathrm{w}}^{0}\right)\right)$
$\mathrm{k}_{\mathrm{u}}^{1}$	$\mathrm{k}_{\mathrm{v}}^{0}$	$\mathrm{E}_{\mathrm{k}_{\mathrm{u}}^{\prime}}\left(\mathrm{E}_{\mathrm{k}_{\mathrm{v}}^{0}}\left(\mathrm{k}_{\mathrm{w}}^{0}\right)\right)$
$\mathrm{k}_{\mathrm{u}}^{1}$	$\mathrm{k}_{\mathrm{v}}^{1}$	$\mathrm{E}_{\mathrm{k}_{\mathrm{u}}^{\prime}}\left(\mathrm{E}_{\mathrm{k}_{\mathrm{v}}^{\prime}}\left(\mathrm{k}_{\mathrm{w}}^{1}\right)\right)$

- U sends all the ciphertexts $E_{k^{\prime}}\left(E_{k^{\prime \prime}}\left(k^{\prime \prime \prime}\right)\right)$ in volume w to V
- U sends $\mathrm{k}_{\mathrm{u}}^{\mathrm{u}}$ to V
- U sends $\mathrm{k}_{\mathrm{w}}^{0}, \mathrm{k}_{\mathrm{w}}^{1}$ to V

Yao’s Garble Circuit (two-party, Boolean)

- all the ciphertexts $E_{k^{\prime}}\left(E_{k^{\prime \prime}}\left(k^{\prime \prime \prime}\right)\right)$ in volume w,

With $\mathrm{k}_{\mathrm{u}}^{\mathrm{u}}$ and $\mathrm{k}_{\mathrm{V}}^{\mathrm{V}}, \mathrm{V}$ can decrypt $\mathrm{k}_{\mathrm{W}}^{\mathrm{W}}$

- $\mathrm{k}_{\mathrm{u}}^{\mathrm{u}}$
- $\mathrm{k}_{\mathrm{w}}^{0}, \mathrm{k}_{\mathrm{W}}^{1}$

A fun application

- Bob and Alice want to check if they are interested in dating
- If both are yes, the output is yes
- If one is no, the output is no

<Pride and Prejudice>

Garbled general circuit framework

Garbled general circuit framework

Garbling a circuit:

Garbled general circuit framework

Garbling a circuit:

- Pick random labels $W_{0} ; W_{1}$ on each wire

Garbled general circuit framework

Garbling a circuit:

- Pick random labels $W_{0} ; W_{1}$ on each wire
- "Encrypt" truth table of each gate

Garbled general circuit framework

Garbling a circuit:
Garbled evaluation:

- Pick random labels $W_{0} ; W_{1}$ on each wire
- "Encrypt" truth table of each gate

Garbled general circuit framework

Garbling a circuit:
Garbled evaluation:

- Pick random labels $W_{0} ; W_{1}$ on each wire
- "Encrypt" truth table of each gate
- Garbled circuit all encrypted gates
- Garbled encoding one label per wire

Garbled general circuit framework

Garbling a circuit:

- Pick random labels $W_{0} ; W_{1}$ on each wire
- "Encrypt" truth table of each gate
- Garbled circuit all encrypted gates
- Garbled encoding one label per wire

Garbled general circuit framework

Garbling a circuit:

- Pick random labels $W_{0} ; W_{1}$ on each wire
- "Encrypt" truth table of each gate
- Garbled circuit all encrypted gates
- Garbled encoding one label per wire

Garbled general circuit framework

Garbling a circuit:

- Pick random labels $W_{0} ; W_{1}$ on each wire
- "Encrypt" truth table of each gate
- Garbled circuit all encrypted gates
- Garbled encoding one label per wire

Garbled evaluation:

- Only one ciphertext per gate is decryptable

Garbled general circuit framework

Garbling a circuit:

- Pick random labels $W_{0} ; W_{1}$ on each wire
- "Encrypt" truth table of each gate
- Garbled circuit all encrypted gates
- Garbled encoding one label per wire

Garbled evaluation:

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Yao's Protocol

- Two party
- For a Boolean circuit.

How about Multi-party and arithmetic / Boolean circuit?

GMW (multiparty, Boolean)

[GMW87]Goldreich, O., S. Micali, and A. Wigderson. 1987. "How to Play any Mental Game or A Completeness

GMW (multiparty, Boolean)

Secret share inputs:

$$
\begin{array}{lll}
\mathrm{a}=\mathrm{a}_{1} & \oplus & a_{2} \\
\mathrm{~b}=\mathrm{b}_{1} & \oplus & \mathrm{~b}_{2}
\end{array}
$$

GMW (multiparty, Boolean)

Secret share inputs:

$$
\begin{array}{lll}
\mathrm{a}=\mathrm{a}_{1} & \oplus & \mathrm{a}_{2} \\
\mathrm{~b}=\mathrm{b}_{1} & \oplus & \mathrm{~b}_{2}
\end{array}
$$

Non-Interactive XOR gates: $c_{1}=a_{1} \oplus b_{1} ; c_{2}=a_{2} \oplus b_{2}$

Interactive AND gates:

GMW (multiparty, Boolean)

Interactive AND gates:

- One AND gate requires the execution of 1-out-of-4 OT

$$
d_{2}=\left(c_{1} \oplus c_{2}\right)\left(b_{1} \oplus b_{2}\right)-d_{1}
$$

GMW (multiparty, Arithmetic/Boolean)

Secret share inputs:

Non-Interactive XOR gates: $\mathrm{c}_{1}=\mathrm{a}_{1} \oplus \mathrm{~b}_{1} ; \mathrm{c}_{2}=\mathrm{a}_{2} \oplus \mathrm{~b}_{2}$

Interactive AND gates:

Our step

1 secure computation: Concepts \& definitions
2 General constructions: Yao's protocol, and others
3 custom protocol: private set intersection

Custom protocol: private set intersection (PSI)

Special case of secure 2-party computation:

$$
X=\left\{x_{1}, x_{2}, \ldots\right\}
$$

PSI applications

- Contact discovery, when signing up for WhatsApp
- $X=$ address book in my phone (phone numbers)
- Y = WhatsApp user database
- Private scheduling
- $X=$ available timeslots on my calendar
- $Y=$ available timeslots on your calendar
- Ad conversion rate
- $X=$ users who saw the advertisement
- $Y=$ customers who bought the product
- etc

"Obvious" protocol

"Obvious" protocol

- INSECURE: Receiver can test any $v \in\left\{x_{1}, x_{2}, \cdots\right\}$ or not offline
- Problematic if items have low entropy (e.g., phone numbers)

Classical protocol: Diffie-Hellman

special case: each party has just one item

check: $H(x)^{\alpha \beta} \stackrel{?}{=} H(y)^{\beta \alpha}$
where H is a hash function with image of a group $G=\langle g\rangle$
Idea:

- If $x=y, H(x)^{\alpha \beta}=H(y)^{\alpha \beta}$
- If $x \neq y$, they are random

Classical protocol: Diffie-Hellman

where H is a hash function with image of a group $G=<g>$
Idea:

- If $x=y, H(x)^{\alpha \beta}=H(y)^{\alpha \beta}$
- If $x \neq y$, they are random

PSI

There are other solutions with trade-offs using

- Yao's protocol
- OT
- Etc.

PSI on small sets (hundreds)

- private availability poll
- key agreement techniques

PSI on asymmetric sets (100 : billion)

- contact discovery; password checkup
- offline phase; leakage

PSI on large sets (millions)

- double-registered voters
- OT extension; combinatorial tricks

computing on the intersection
- sales statistics about intersection
- generic MPC

PSI: intersection of leaked password

Summary

1 secure computation: Concepts \& definitions
2 General constructions: Yao's protocol, and GMW
3 custom protocol: private set intersection

Depending on the definition of "Function F", MPC could be very powerful

Materials

- David Evans, Vladimir Kolesnikov and Mike Rosulek, A Pragmatic Introduction to Secure Multi-Party Computation
- Dan Boneh and Victor Shoup, A Graduate Course in Applied Cryptography, Section 23

Lecture 9: Privacy-Enhancing technologies 3: MPC

Diffie

Hellman

Rivest

Rivest

Yao

1978

Homomorphic Enc
MPC

Goldwasser

Micali

1976	1977	1978	1982	1985
New directions	RSA	Homomorphic Enc	MPC	Zero Knowledge

Thank you

