Lecture 8: Privacy-Enhancing Technologies-2
 -Zero Knowledge Proof

COMP 6712 Advanced Security and Privacy
Haiyang Xue
haiyang.xue@polyu.edu.hk
2024/3/11

Topic 2: Zero-knowledge proof

- Identification protocol and signature
- Sigma protocol
- Zero-knowledge proof
- Zero knowledge proof for all NP
- Non-interactive ZKP
- zkSNARK and applications

Our aim

- We would like to know what is zero-knowledge proof
- We start from a special case, sigma protocol
- How can we construct zero-knowledge proof?
- What can we do with zero-knowledge proof?
- Recent development of zero-knowledge proof.

Typical proof

- In mathematics and in life, we often want to convince or prove things to others.
- Typically, if I know that X is true, and I want to convince you of that, I try to present all the facts I know and the inferences from that fact that imply that X is true.
- Ex: I know that 26781 is not a prime since it is 113×237, to prove to you that fact, I will present these factor and demonstrate that indeed $113 \times 237=26781$.

Why Zero-knowledge proof

- Byproduct of a proof is that you gained some knowledge,
- other than that you are now convinced that the statement is true.
- Ex: In the example before, not only are you convinced that 26781 is not a prime, but you also learned its factorization.
- A zero knowledge proof (Goldwasser, Micali, Rackoff 1982) tries to avoid it.
- Alice will prove to Bob that a statement X is true,
- Bob will completely convinced that X is true, but will not learn anything as a result of this process. That is, Bob will gain zero knowledge.

Mathematic problem

- Root of Quadratic equation
- $a x^{2}+b x+c=0$
- Solutions of this problem dates back to 2000 BC , Babylonian mathematicians give a preliminary solution.
- There are independent findings given by Babylonia, Egypt, Greece, China, and India.
- Now, we know $\quad x=\frac{-b \pm \sqrt{b^{2}+2 a c}}{2 a}$

We assume

- Euclid would like to show to another mathematician he can find roots of all Quadratic equations,

Euclid mathematician

$$
x=\frac{-b \pm \sqrt{b^{2}+2 a c}}{2 a} \quad a, b, c \quad \begin{aligned}
& \text { Pick } a, b, c \\
& a x^{2}+b x+c=0
\end{aligned}
$$

$$
x_{1}, x_{2}
$$

- BUT do not want to give any concrete solutions.(which adds "knowledge" to the mathematician)
- This is what zero-knowledge proof can solve

Applications: Electronic Voting (e-voting)

```
Candidates:
Alice,
Bob,
Tom,
Tony,
```

Alice, 0 or 1

Electronic Voting (e-voting)

Candidates:
Alice,
Bob,
Tom,
Tony,
ElGamal Enc for privacy

$$
\begin{gathered}
G=\langle g\rangle \\
p k:=h=g^{s}, s k:=s
\end{gathered}
$$

Central Election Comission

Electronic Voting (e-voting)

Candidates:

Alice,
Bob,
Tom,
Tony,

ElGamal Enc for privacy
$G=<g>$
$p k:=h=g^{s}, s k:=s$

For Alice
$g^{\beta_{1}}, h^{\beta_{1}} \cdot g^{b_{1}}$

Cheating Voter $\quad b_{1}=1000$

Thus, the voter needs to prove this is a ElGamal enc of 0 or 1
While no knowledge of b_{1} is leaked

This is what Zero-knowledge proof can solve

Identification protocol

Identification protocol and signature

- ID for dl
- DDH
- Schnorr signatures

Identification/Authentication paradigm

Password Auth. sk = vk = pw
Public key Auth. sk, vk is public key

Identification/Authentication paradigm

P proves the fact that "it knows $\boldsymbol{\alpha}$ such that $\boldsymbol{u}=\boldsymbol{g}^{\alpha "}$ and nothing else is leaked.

A toy example: Ali Baba Cave

Goldwasser, Micali, Rackoff: The Knowledge Complexity of Interactive Proof-Systems (Extended Abstract)

Alibaba Cave

Alibaba Cave

- if doesn't know the key, the proof was accepted with $1 / 2$.
- Q' learns nothing about the magic code

Repeat the game n times

- if does't know the key, the proof was accepted with $\frac{1}{2^{n}}$.
- Q ${ }^{2}$ learns nothing about the magic code

Identification for Discrete logarithm

$$
\boldsymbol{G}=<\boldsymbol{g}>,|\boldsymbol{G}|=\boldsymbol{q}
$$

$$
\begin{aligned}
g^{a} g^{b} & =g^{a+b} \\
\left(g^{a}\right)^{b} & =g^{a b}
\end{aligned}
$$

$u=g^{\alpha}$

Schnorr Identification

Correctness $g^{z}=g^{\alpha_{t}} g^{e \alpha}=g^{\alpha_{t}+e \alpha}$

- if doesn't know the key, the proof was accepted with $1 / 2$.
- Q^{2} learns nothing about the magic code (α is covered by α_{t})

- if doesn't know the key, the proof was accepted with $1 / 2$.
- Repeat the game n times, if ... doesn't know the key, accepted with $1 / 2^{n}$.
How about choose $e \leftarrow Z_{q}$, (q entrances rather than 2)?

Schnorr Identification

$$
\begin{aligned}
& u=g^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{\mathrm{z}} \leftarrow \alpha_{\mathrm{t}}+\alpha c \bmod q \\
& \xrightarrow{\alpha_{\mathrm{z}}} \\
& g^{\alpha_{z}} \stackrel{?}{=} u_{\mathrm{t}} \cdot u^{c}
\end{aligned}
$$

- Challenge space $\mathcal{C}=Z_{q}$
- Conversation: $\left(u_{t}, c, \alpha_{z}\right)$ is said to be valid if the verification passes

Direct Attacker

- An attacker without knowing α would like to pass the verification.

$$
\begin{aligned}
& g^{\alpha_{z}} \stackrel{?}{=} u_{\mathrm{t}} \cdot u^{c}
\end{aligned}
$$

If the attacker can return valid respond α_{z} for a random c with probability ϵ
it can return valid respond $\alpha^{\prime}{ }_{z}$ for a random c^{\prime} with probability $\epsilon-1 / q$ [Theorem 19.1, DS]

With c, c^{\prime} and $\left\{\begin{array}{l}\alpha_{z}=\alpha_{t}+\alpha c \bmod q \\ \alpha_{z}^{\prime}=\alpha_{t}+\alpha c^{\prime} \bmod q\end{array}\right.$
we can find (or extract) α with probability $\epsilon(\epsilon-1 / q$) (which is the discrete logarithm problem)

What we have shown: "proof of knowledge"

- If someone passes the verification of Schnorr Identification,
- We must have the someone knows the discrete logarithm of $u=g^{\alpha}$

Eavesdropper Attacker

Actually, the attacker may see several valid conversations $\left(u_{t}^{i}, c^{i}, \alpha_{z}^{i}\right)_{i=1,2,3 . . .}$ does "proof of knowledge" hold?

$$
\begin{aligned}
& \underline{P(\alpha)} \quad u=g^{\alpha} \quad \underline{V(u)}
\end{aligned}
$$

$$
\begin{aligned}
& c c^{\prime} c \stackrel{\mathrm{R}}{ } \\
& \alpha_{\mathrm{z}} \leftarrow \alpha_{\mathrm{t}}+\alpha c \bmod q \\
& \alpha_{z} \quad \alpha_{Z}^{\prime}=\alpha_{t}+\alpha c \bmod q \\
& g^{\alpha_{z}} \stackrel{?}{=} u_{\mathrm{t}} \cdot u^{c}
\end{aligned}
$$

If the attacker can return valid respond α_{z} for a random c with probability ϵ
it can return valid respond α_{z} for a random c^{\prime} with probability $\epsilon-1 / q$ [Theorem 19.1, DS]

We can generate what Eav attacker learns $\left(u_{t}^{i}, c^{i}, \alpha_{Z}^{i}\right)_{i=1,2,3 . .}$ Sample $\alpha_{z}^{i} \leftarrow Z_{q}, c^{i} \leftarrow Z_{\mathrm{q}}$ compute $u_{t}^{i}=g^{\alpha_{\mathrm{z}}^{i}} / u^{c^{i}}$

With c, c^{\prime} and $\left\{\begin{array}{l}\alpha_{z}=\alpha_{t}+\alpha c \bmod q \\ \alpha_{z}^{\prime}=\alpha_{t}+\alpha c^{\prime} \bmod q\end{array}\right.$
we can extract α with probability $\epsilon(\epsilon-1 / q)$ (which is the discrete logarithm problem)

What we have shown: honest verifier zero-knowledge

$$
\begin{aligned}
& \alpha_{z} \leftarrow \alpha_{t}+\alpha c \bmod q \\
& g^{\alpha_{z}} \stackrel{?}{=} u_{t} \cdot u^{c}
\end{aligned}
$$

Honest verifier zero-knowledge says that:
without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

Schnorr Identification

$$
\begin{aligned}
& \alpha_{\mathrm{t}} \leftarrow^{\mathbb{R}} \frac{P(\alpha)}{\mathbb{Z}_{q}, u_{\mathrm{t}}} \leftarrow g^{\alpha_{\mathrm{t}}} \xrightarrow{u_{\mathrm{t}}} \xrightarrow{u=g^{\alpha}} \begin{array}{c}
\underline{V(u)} \\
\\
\end{array} \\
& \alpha_{z} \leftarrow \alpha_{\mathrm{t}}+\alpha c \bmod q \\
& g^{\alpha_{z}} \stackrel{?}{=} u_{t} \cdot u^{c}
\end{aligned}
$$

- Correctness(Completeness): If P and V execute the protocol honestly, the proof is accepted.
- Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) α
- Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

Identification protocol --- > Signature

$$
\begin{aligned}
& \alpha_{z} \leftarrow \alpha_{\mathrm{t}}+\alpha c \bmod q \\
& \alpha_{\mathrm{z}} \\
& g^{\alpha_{z}} \stackrel{?}{=} u_{\mathrm{t}} \cdot u^{c} \\
& \text { - The key generation } \\
& \text { - } \alpha \leftarrow Z_{q}, u=g^{\alpha} \\
& \text { - } s k=\alpha, v k=u \\
& \text { - To sign } m \\
& \text { - } \alpha_{t} \leftarrow Z_{q}, u_{t}=g^{\alpha_{t}} \\
& \text { - } c=\operatorname{Hash}\left(m, u_{t}, u\right) \\
& \text { - } \alpha_{z}=\alpha_{t}+\alpha c \bmod q \\
& \text { - Return } \sigma=\left(u_{t}, c, \alpha_{t}\right)
\end{aligned}
$$

Schnorr Signature is UF-CMA secure, under the discrete logarithm assumption

Identification protocol --- > Signature

Soundness (discrete log)

- The key generation
- $\alpha \leftarrow Z_{q}, u=g^{\alpha}$
- $s k=\alpha, v k=u$
- To sign m
- $\alpha_{t} \leftarrow Z_{q}, u_{t}=g^{\alpha_{t}}$
- $c=\operatorname{Hash}\left(m, u_{t}, u\right)$
- $\alpha_{z}=\alpha_{t}+\alpha c \bmod q$
- Return $\sigma=\left(u_{t}, c, \alpha_{t}\right)$

- Verification

- $g^{\alpha_{z}}=? u_{t} \cdot u^{c}$

Hash is random oracle

History of Schnorr signature

- Schnorr invented Schnorr signature in 1989
- It was covered by U.S. Patent which expired in February 2008.
- In 1991, the National Institute of Standards (NIST) considered a number of viable candidates. Because the Schnorr system was protected by a patent, NIST opted for a more ad-hoc signature scheme: (EC)DSA
- Security: Schnorr > ECDSA
- Deployment: Schnorr < ECDSA

Identification for Decisional Diffie-Hellman $I D_{D D H}$

$$
\begin{aligned}
& v=g^{\beta}, w=u^{\beta}
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{\mathrm{z}} \leftarrow \beta_{\mathrm{t}}+\beta c \bmod q \\
& g^{\beta_{z}} \stackrel{?}{=} v_{\mathrm{t}} \cdot v^{c} \text { and } u^{\beta_{z}} \stackrel{?}{=} w_{t} \cdot w^{c}
\end{aligned}
$$

Given $\left(g, u, v=g^{\beta}, w=u^{\beta}\right)$ with witness β, P wants to prove that it knows β

Identification for Decisional Diffie-Hellman (DDH)

Given $\left(g, u, v=g^{\beta}, w=u^{\beta}\right)$ with witness β, P wants to prove that it knows β

$$
v=g^{\beta}, w=u^{\beta}
$$

$$
\beta_{\mathrm{t}} \stackrel{\mathbb{R}}{ } \stackrel{P(\beta,(u, v, w))}{\mathbb{Z}_{q}, v_{\mathrm{t}} \leftarrow g^{\beta_{\mathrm{t}}}, w_{\mathrm{t}} \leftarrow u^{\beta_{\mathrm{t}}}} \begin{gathered}
\frac{v_{\mathrm{t}}, w_{\mathrm{t}}}{\longrightarrow} \\
\beta_{\mathrm{z}} \leftarrow \beta_{\mathrm{t}}+\beta c \bmod q \\
\\
\\
\\
\beta_{\mathrm{z}}
\end{gathered}
$$

- Correctness(Completeness): If P and V exact the protocol honestly, the proof is accepted.
- Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) α
- Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

$$
\beta_{z} \leftarrow Z_{q}, c \leftarrow Z_{q}, v_{t}=\frac{g^{\beta_{z}}}{v^{c}}, u_{t}=g^{\beta_{z}} / u^{c}
$$

A short summary

- Identification protocol could be used to prove knowing something (discrete log)
- Without the fact of knowing something, nothing else is leaked
- Identification protocol could be used to build signature
- Identification protocols from discrete log and DDH

SIGMA protocol

SIGMA protocol

- Identification protocol is a special case of SIGMA protocol
- We first recall the language and corresponding relation

$$
\begin{aligned}
& \text { A NP language } L:=\{y \mid \exists x \text { s.t. }(x, y) \in R\} \quad \text { Corresponding Relation } R \\
& \qquad y \in L \quad \text { if and only if } \exists \text { withness } x \text {, such that }(x, y) \in R \\
& (g, u, v, w) \in L_{D D H} \text { iff } \exists \text { witness } \beta \text { such that } v=g^{\beta}, w=u^{\beta} \\
& x \text { is called the witness and } y \text { is called the statement }
\end{aligned}
$$

SIGMA protocol

- To proof that P knows witness x of statement y such that $(x, y) \in R$
- Sigma protocol runs as follows and

- Correctness(Completeness): If P and V execute the protocol honestly, the proof is accepted.
- Special Soundness: given valid transection (t, c, z) and $\left(t, c^{\prime}, z^{\prime}\right)$, we could extract x
- Honest verifier zero-knowledge says that: without knowing witness x, we can generate (simulate) the valid

Identification protocol is a special case of SIGMA

Schnorr, Discrete log relation $\mathcal{R}=\left\{(\alpha, u) \in \mathbb{Z}_{q} \times \mathbb{G}: g^{\alpha}=u\right\}$

DDH relation $\quad \mathcal{R}:=\left\{(\beta,(u, v, w)) \in \mathbb{Z}_{q} \times \mathbb{G}^{3}: v=g^{\beta}\right.$ and $\left.w=u^{\beta}\right\}$

Other relations

Given $G=<g>$ of order $q, h \in G$, and $u=g^{\alpha} h^{\beta} \in G$ with witness α, β, prove the following relation

$$
\mathcal{R}=\left\{((\alpha, \beta), u) \in \mathbb{Z}_{q}^{2} \times \mathbb{G}: g^{\alpha} h^{\beta}=u\right\}
$$

Okamoto's protocol

$$
\begin{aligned}
& \mathcal{R}=\left\{((\alpha, \beta), u) \in \mathbb{Z}_{q}^{2} \times \mathbb{G}: g^{\alpha} h^{\beta}=u\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{z} \leftarrow \alpha_{\mathrm{t}}+\alpha c \bmod q \\
& \beta_{z} \leftarrow \beta_{t}+\beta c \bmod q \\
& g^{\alpha_{z}} h^{\beta_{z}} \stackrel{?}{=} u_{t} \cdot u^{c} \\
& \text { - Correctness(Completeness): If } P \text { and } V \text { execute the protocol honestly, the proof is accepted. } \\
& \text { - Special Soundness: given valid transection (} u_{t}, c, \alpha_{z}, \beta_{z} \text {) and (} u_{t}, c^{\prime}, \alpha^{\prime}{ }_{z}, \beta^{\prime}{ }_{z} \text {), we could extract } \alpha, \beta
\end{aligned}
$$

- Honest verifier zero-knowledge says that: without knowing witness x, we can generate (simulate) the valid

AND composition of SIGAMA

Schnorr, Discrete log relation $\mathcal{R}=\left\{(\alpha, u) \in \mathbb{Z}_{q} \times \mathbb{G}: g^{\alpha}=u\right\}$

How about prove

$$
R_{1} \wedge R_{2}=\left\{\left(x_{1}, x_{2} ; h_{1}, h_{2}\right) \in Z_{q}^{2} \times G^{2}: h_{1}=g^{x_{1}} \text { and } h_{2}=g^{x_{2}}\right\}
$$

R_{1} and R_{2} are Discrete log relations
$G=\langle g>$ is group of order p

AND composition of SIGAMA: Parallel attempt

How about prove

$$
R_{1} \wedge R_{2}=\left\{\left(x_{1}, x_{2} ; h_{1}, h_{2}\right) \in Z_{q}^{2} \times G^{2}: h_{1}=g^{x_{1}} \text { and } h_{2}=g^{x_{2}}\right\}
$$

Run two Schnorr protocols independently???

AND composition of SIGAMA: Better solution

How about prove

$$
\begin{aligned}
& R_{1} \wedge R_{2}=\left\{\left(x_{1}, x_{2} ; h_{1}, h_{2}\right) \in Z_{q}^{2} \times G^{2}: h_{1}=g^{x_{1}} \text { and } h_{2}=g^{x_{2}}\right\} \\
& h_{1}=g^{x_{1}} \text { and } h_{2}=g^{x_{2}} \\
& \text { Prover Verifier } \\
& \left(x_{1}=\log _{g} h_{1}, x_{2}=\log _{g} h_{2}\right) \\
& u_{1}, u_{2} \in_{R} \mathbb{Z}_{n} \\
& a_{1} \leftarrow g^{u_{1}} \\
& a_{2} \leftarrow g^{u_{2}} \\
& a_{1}, a_{2} \\
& c \in_{R} \mathbb{Z}_{n} \\
& r_{1} \leftarrow_{n} u_{1}+c x_{1} \bmod q \\
& r_{2} \leftarrow_{n} u_{2}+c x_{2} \bmod q-r_{1}, r_{2} \longrightarrow \\
& g^{r_{1}} \stackrel{?}{=} a_{1} h_{1}^{c} \\
& g^{r_{2}} \stackrel{?}{=} a_{2} h_{2}^{c}
\end{aligned}
$$

The same challenge is applied to two proofs

OR composition of SIGAMA

Schnorr, Discrete log

$$
\mathcal{R}=\left\{(\alpha, u) \in \mathbb{Z}_{q} \times \mathbb{G}: g^{\alpha}=u\right\}
$$

AND Composition

$$
R_{1} \wedge R_{2}=\left\{\left(x_{1}, x_{2} ; h_{1}, h_{2}\right) \in Z_{q}^{2} \times G^{2}: h_{1}=g^{x_{1}} \text { and } h_{2}=g^{x_{2}}\right\}
$$

OR Composition

$$
R_{1} \vee R_{2}=\left\{\left(x_{1} \text { or } x_{2} ; h_{1}, h_{2}\right) \in Z_{q} \times G^{2}: h_{1}=g^{x_{1}} \text { or } h_{2}=g^{x_{2}}\right\}
$$

R_{1} and R_{2} are Discrete log relations

OR composition of SIGAMA

How about prove $\quad R_{1} \vee R_{2}=\left\{\left(x_{1}\right.\right.$ or $\left.x_{2} ; h_{1}, h_{2}\right) \in Z_{q} \times G^{2}: h_{1}=g^{x_{1}}$ or $\left.h_{2}=g^{x_{2}}\right\}$

$$
\text { Prover } \quad h_{1}=g^{x_{1}} \text { or } h_{2}=g^{x_{2}} \quad \text { Verifier }
$$

The simulation

The real Schnorr

- $c=c_{1}+c_{2}$
- Simulate a valid transection for unknown witness but known challenge
- Generate the real Schnorr for known witness but unknown challenge

Question 1: 3 OR composition of SIGAMA

OR Composition

$$
R_{1} \bigvee R_{2}=\left\{\left(x_{1} \text { or } x_{2} ; h_{1}, h_{2}\right) \in Z_{q} \times G^{2}: h_{1}=g^{x_{1}} \text { or } h_{2}=g^{x_{2}}\right\}
$$

3OR Composition

$$
\begin{aligned}
& R_{1} \vee R_{2} \vee R_{3}=\left\{\left(x_{1}, x_{2} \text { or } x_{3} ; h_{1}, h_{2}, h_{3}\right) \in Z_{q} \times G^{2}:\right. \\
& \left.h_{1}=g^{x_{1}} \text { or } h_{2}=g^{x_{2}} \text { or } h_{3}=g^{x_{3}}\right\}
\end{aligned}
$$

- $c=c_{1}+c_{2}+c_{3}$
- Simulate two valid transections for unknown witness but known challenge
- Generate a real Schnorr for known witness but unknown challenge

$$
R_{1}, R_{2} \text { and } R_{3} \text { are Discrete log relations }
$$

Question 2: AND-OR composition of SIGAMA

AND Composition

$$
R_{1} \wedge R_{2}=\left\{\left(x_{1}, x_{2} ; h_{1}, h_{2}\right) \in Z_{q}^{2} \times G^{2}: h_{1}=g^{x_{1}} \text { and } h_{2}=g^{x_{2}}\right\}
$$

OR Composition

$$
R_{1} \vee R_{2}=\left\{\left(x_{1} \text { or } x_{2} ; h_{1}, h_{2}\right) \in Z_{q} \times G^{2}: h_{1}=g^{x_{1}} \text { or } h_{2}=g^{x_{2}}\right\}
$$

How about relation $\left(R_{1} \bigvee R_{2}\right) \wedge\left(R_{3} \bigvee R_{4}\right)$

$$
R_{1}, R_{2}, R_{3} \text { and } R_{4} \text { are Discrete log relations }
$$

The second Assignment, I will give concrete requirement in next lecture.

Electronic Voting (e-voting)

Candidates:
Alice,
Bob,
Tom,
Tony,

$$
\begin{gathered}
G=\langle g\rangle \\
p k:=h=g^{s}, s k:=s
\end{gathered}
$$

ElGamal Enc for privacy
...

$$
\begin{aligned}
\text { For Alice } & g^{\beta_{1}}, h^{\beta_{1}} \cdot g^{b_{1}} \\
\text { Cheating Voter } & b_{1}=1000
\end{aligned}
$$

Thus, the voter needs to prove this is a ElGamal enc of 0 or 1
While no knowledge of b_{1} is leaked

This is what Zero-knowledge proof can solve

OR-composition of $\mathrm{ID}_{D D H}$

- We are ready to give such zero-knowledge proof
- Given $G=<g>, p k=u=g^{s}$
- and ciphertext $v=g^{\beta}, e=u^{\beta} \cdot g^{b}$
- Proof the following relation

$$
\mathcal{R}:=\left\{((b, \beta),(u, v, e)): v=g^{\beta}, \quad e=u^{\beta} \cdot g^{b}, \quad b \in\{0,1\}\right\} .
$$

(u, v, e) is the encryption of 0 or 1 if and only if (g, u, v, e) is a DDH tuple or $(g, u, v, e / g)$ is a DDH tuple

We only need an OR-composition of $\operatorname{ID}_{D D H}$ to show that (g, u, v, e) is a DDH tuple or $(g, u, v, e / g)$ is a DDH tuple

Applications: e-voting

> ElGamal Enc for privacy $$
\begin{array}{l}G=<g> \\ p k:=u=g^{s}, s k:=s\end{array}
$$

For Alice
$v=g^{\beta_{1}}, e=h^{\beta_{1}} \cdot g^{b_{1}}$

П

OR-composition proof Π of $\mathrm{ID}_{D D H}$ to show that (g, u, v, e) is a DDH tuple or $(g, u, v, e / g)$ is a DDH tuple

A short summary: SIGMA protocol

- Identification protocol is a generalization of Identification protocol
- To proof that P knows witness x of statement y such that $(x, y) \in R$
- SIGMA for several relations
- OR and AND composition of SIGMA protocol

Applications: e-voting

Zero-knowledge proof

Zero-knowledge proof

- Zero-knowledge proof is an extension of SIGMA protocol
- The interactive is not necessary of 3-pass
- The soundness is not necessary of proof-of-knowledge
- The zero-knowledge should be hold for any verifier
$y \in L \quad$ if and only if \exists withness x, such that $(x, y) \in R$

Prover Verifier

- Correctness(Completeness): If $y \in L, \mathrm{P}$ and V execute the protocol honestly, the proof is accepted.
- Soundness: If $y \notin L$, for any (computational) P, V accepts with negligible probability
- Zero-knowledge: For any V , without knowing witness x, we can generate (simulate) the valid transaction efficiently for $y \in L$

Zero Knowledge Proof for NP language

- Let L be an NP language
- Prover with input (x, y) wants to prove that $y \in L$
- if $y \in L$, verifier accept
- if $y \notin L$, for any (PPT) prover, verifier will reject
- Zero-knowledge: any verifier learns nothing about the witness x

Zero Knowledge Proof (ZKP) for NP

Theorem [GMW86] Commitment ---> ZKP for all of NP

[GMW86] O Goldreich, S Micali, A Wigderson, Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems, 1986

Zero Knowledge Proof for NP

- To prove that \exists input x such that $C(x)=y$, where C is any polynomial size circuit.
- Circuit C could be:
- $a x^{2}+b x+c$
- Polynomial function Poly(x)
- Machine learning algorithms
- Etc. \qquad

ZKP for 3-colorable Graphs

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be graphs on n vertices and define $\mathrm{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ be the set of vertices, and $\mathrm{E}=\left\{e_{i, j}: \exists\right.$ edge $e_{i, j}$ between $\left.v_{i}, v_{j}\right\}$ be the set of edges.
- we say that a graph G is 3 -colorable (or GE 3 COL) if there is a function $c: V \rightarrow\{R, G, B\}$
such that for every edge $\left(v_{i}, v_{j}\right) \in \mathrm{E}, c\left(v_{i}\right) \neq c\left(v_{j}\right)$

ZKP for 3-colorable Graphs

- Why?
- The reason is that a protocol for 3COL actually implies a protocol for all languages in NP, since 3COL is NP-complete
- It means that we have a function Reduce that on input a NP language instance y, outputs a graph G such that

$$
y \in L \text { iff } \mathrm{G} \in 3 C O L
$$

what's more, there exists Reduce' on input witness x for $y \in L$ outputs witness for $G \in 3 C O L$

- This can be used for the prover to convert their proof for any NP into a proof for the 3COL protocol.

A tool: Commitment

- A commitment Com is a 3-tuple algorithms (Setup, Commit, Verify)
- Setup: Generate public parameters pp
- Commit (m) : Compute a commitment c to m with its opening d, and output c
- Verify (c, m, d) : indicate the validation of (m, d) with respect to commitment c
- A commitment could be statistical hiding and computational binding, or computational hiding and statistical hiding. For the first one
- Hiding: For any $m, m^{\prime} \in \mathcal{M}_{\text {com }}$, their commitments are statistical indistinguishable.
- Binding: No probability polynomial time (PPT) adversary could open a commitment c on two different messages.
- Ex: Commit (m) as Hash(m, d) for randomness d, Hash could be SHA256
- Hiding: random oracle of Hash
- Biding: collision resistance

ZKP for 3-colorable Graphs

ZKP for 3-colorable Graphs

- Correctness(Completeness): easy.
- Soundness: If it is not 3-colorable, for any (computational) P, V accepts with probability less than $1-1 /|E|$
- Implied by the biding of Commit

ZKP for 3-colorable Graphs

- (Honest verifier) Zero-knowledge:
- Step 1: Pick random index i, j
- Step 2: Commit(0), $\ldots, \operatorname{Commit}(0)$, and only two of them (with index i, j) are different R, G, or B
- When getting $\left(i^{\prime}, j^{\prime}\right)$ from verifier, if $\left(i^{\prime}, j^{\prime}\right)=(i, j)$ open commit, otherwise return to Step 1
- Imply by the Hiding of Commit

A short Summary

Theorem [GMW86] Commitment ---> ZKP for all of NP

[GMW86] O Goldreich, S Micali, A Wigderson, Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems, 1986

Non-interactive Zero Knowledge (NIZK)

- Non-interactive is better than interactive (latency)
- NIZK \rightarrow signature, e-voting, etc.
- NIZK only exists for L in BPP, which is not interesting than NP
- However, with the setup of common random string,...
- Or random oracle...

Blum, Feldman, Micali. Non-interactive zero knowledge and its applications
11/3/2024
Fiat, Shamir: How to prove yourself: practical solutions to identification and signature problems ${ }^{6}$

NIZK assuming random oracle

Blum, Feldman, Micali. Non-interactive zero knowledge and its applications
11/3/2024 Fiat, Shamir: How to prove yourself: practical solutions to identification and signature problems 66/72

Succinct Non-Interactive Proof (zkSNARK)

- It is better if we have a very small (Succinct) proof
- And the verification of the proof is efficient.
- These proof is called Succinct Non-Interactive Proof (zkSNARK)
- Consider the complexity of Verifier.
- Could it be less than computing $R(x, w)$?????
- YES!!!!

PCP Theorem [AS,ALMSS,Dinur]:

NP statements have polynomial-size PCPs in which the verifier reads only $O(1)$ bits.

- Can be made ZK with small overhead [KPT97,IW04]

zkSNARK

- Verifiable Outsourcing computation
- Blockchain

Verifiable Outsourcing computation

We do not want to trust the cloud, but would like to use its power.

Cloud appends a zkSNARK Π to proof that $y=f(x)$

	SNARKs	STARKs	Bulletproofs
Algorithmic complexity: prover	$\mathrm{O}(\mathrm{N} * \log (\mathrm{~N})$)	$\mathrm{O}(\mathrm{N}$ * poly $-\log (\mathrm{N})$)	$\mathrm{O}(\mathrm{N} * \log (\mathrm{~N})$)
Algorithmic complexity: verifier	$\sim \mathrm{O}(1)$	$\mathrm{O}($ poly $-\log (\mathrm{N})$)	$\mathrm{O}(\mathrm{N})$
Communication complexity (proof size)	~O(1)	$\mathrm{O}(\mathrm{poly}-\log (\mathrm{N})$)	$\mathrm{O}(\log (\mathrm{N})$)
- size estimate for 1 TX	Tx: 200 bytes, Key: 50 MB	45 kB	1.5 kb
- size estimate for 10.000 TX	Tx: 200 bytes, Key: 500 GB	135 kb	2.5 kb
Ethereum/EVM verification gas cost	~600k (Groth16)	$\sim 2.5 \mathrm{M}$ (estimate, no impl.)	N/A
Trusted setup required?	YES ©	NO ${ }^{\text {P }}$	NO ${ }^{\text {¢ }}$
Post-quantum secure	NO ${ }^{\text {\% }}$	YES ${ }^{\text {e }}$	NO ${ }^{\text {P }}$
1/3/2024 \quad Crypto assumptions	DLP + secure bilinear pairing ©	Collision resistant hashes ©	Discrete log

Thank you

