# Lecture 8: Privacy-Enhancing Technologies-2 -Zero Knowledge Proof

COMP 6712 Advanced Security and Privacy

Haiyang Xue

haiyang.xue@polyu.edu.hk

2024/3/11

- Identification protocol and signature
- Sigma protocol
- Zero-knowledge proof
  - Zero knowledge proof for all NP
  - Non-interactive ZKP
  - zkSNARK and applications

- We would like to know what is zero-knowledge proof
- We start from a special case, sigma protocol
- How can we construct zero-knowledge proof?
- What can we do with zero-knowledge proof?
- Recent development of zero-knowledge proof.

- In mathematics and in life, we often want to convince or prove things to others.
- Typically, if I know that X is true, and I want to convince you of that, I try to present all the facts I know and the inferences from that fact that imply that X is true.
- Ex: I know that 26781 is not a prime since it is  $113 \times 237$ ,

to prove to you that fact, I will present these factor and demonstrate that indeed  $113 \times 237 = 26781$ .

#### Why Zero-knowledge proof

- Byproduct of a proof is that you gained some knowledge,
- other than that you are now convinced that the statement is true.

- Ex: In the example before, not only are you convinced that 26781 is not a prime, but you also learned its factorization.
- A zero knowledge proof (Goldwasser, Micali, Rackoff 1982) tries to avoid it.
- Alice will prove to Bob that a statement X is true,
- Bob will completely convinced that X is true, but will not learn anything as a result of this process. That is, Bob will gain zero knowledge.

#### Mathematic problem

- Root of Quadratic equation
- $\bullet ax^2 + bx + c = 0$
- Solutions of this problem dates back to 2000 BC, Babylonian mathematicians give a preliminary solution.
- There are independent findings given by Babylonia, Egypt, Greece, China, and India.

Now, we know 
$$x = \frac{-b \pm \sqrt{b^2 + 2ac}}{2a}$$

#### We assume

• Euclid would like to show to another mathematician he can find roots of all Quadratic equations,



- BUT do not want to give any concrete solutions. (which adds "knowledge" to the mathematician)
- This is what zero-knowledge proof can solve

### Applications: Electronic Voting (e-voting)



#### Electronic Voting (e-voting)

| Candidates: |  |
|-------------|--|
| Alice,      |  |
| Bob,        |  |
| Tom,        |  |
| Tony,       |  |

...



For Alice 
$$g^{eta_1}$$
,  $h^{eta_1} \cdot g^{b_1}$ , where  $b_1 = 0$  or 1

For Bob 
$$g^{eta_2}$$
,  $h^{eta_2} \cdot g^{b_2}$ , where  $b_2 = 0$  or 1

For Tony 
$$g^{\beta_n}, h^{\beta_n} \cdot g^{b_n}$$
, where  $b_2 = 0$  or 1

$$\Pi g^{\beta_i}, \Pi(h^{\beta_i} \cdot g^{b_i})$$
 which is  $g^{\sum \beta_i}, (h^{\sum \beta_i} \cdot g^{\sum b_i})$   
an enc of  $\sum b_i$ 



### Electronic Voting (e-voting)



# Identification protocol

#### Identification protocol and signature

- ID for dl
- DDH

• Schnorr signatures

#### Identification/Authentication paradigm



Password Auth. **sk = vk = pw** 

Public key Auth. sk, vk is public key

#### Identification/Authentication paradigm

G = < g >, |G| = q



P proves the fact that "it knows  $\alpha$  such that  $u = g^{\alpha}$ " and nothing else is leaked. How???????

#### A toy example: Ali Baba Cave



Goldwasser, Micali, Rackoff: The Knowledge Complexity of Interactive Proof-Systems (Extended Abstract)



#### Alibaba Cave



if a doesn't know the key, the proof was accepted with 1/2.
learns nothing about the magic code

#### Repeat the game n times



- if  $\frac{2}{n}$  does't know the key, the proof was accepted with  $\frac{1}{2^n}$ .
- learns nothing about the magic code

#### Identification for Discrete logarithm







#### Schnorr Identification



Correctness  $g^z = g^{\alpha_t} g^{e\alpha} = g^{\alpha_t + e\alpha}$ 

20/72



if a doesn't know the key, the proof was accepted with 1/2.
learns nothing about the magic code (*α* is covered by *α*<sub>t</sub>)



• if 2 doesn't know the key, the proof was accepted with 1/2.

Repeat the game n times, if ... doesn't know the key, accepted with 1/2<sup>n</sup>.

► How about choose  $e \leftarrow Z_q$ , (*q* entrances rather than 2)?

#### Schnorr Identification



• Challenge space  $C = Z_q$ 

• Conversation:  $(u_t, c, \alpha_z)$  is said to be valid if the verification passes

• An attacker without knowing  $\alpha$  would like to pass the verification.

$$\alpha_{t} \stackrel{\mathbb{P}(\alpha)}{\leftarrow} u_{t} \stackrel{\mathbb{P}(\alpha)}{\leftarrow} g^{\alpha_{t}} \qquad \qquad u = g^{\alpha} \qquad \underbrace{\frac{V(u)}{}}_{c (u)}$$

$$\xrightarrow{\alpha_{t} \leftarrow} u_{t} \xrightarrow{\alpha_{t}} c \stackrel{\mathbb{C}}{\leftarrow} c \xrightarrow{\mathbb{C}'} c \xrightarrow$$

If the attacker can return valid respond  $\alpha_z$  for a random c with probability  $\epsilon$ 

it can return valid respond  $\alpha'_z$  for a random c' with probability  $\epsilon - 1/q$  [Theorem 19.1, DS]

With *c*, *c*' and 
$$\begin{cases} \alpha_z = \alpha_t + \alpha c \mod q \\ \alpha'_z = \alpha_t + \alpha c' \mod q \end{cases}$$

we can find (or extract)  $\alpha$  with probability  $\epsilon(\epsilon - 1/q)$  (which is the discrete logarithm problem)

[DS] Dan Boneh and Victor Shoup, <u>A Graduate Course in Applied Cryptography</u>

#### What we have shown: "proof of knowledge"

- If someone passes the verification of Schnorr Identification,
- We must have the someone knows the discrete logarithm of  $u = g^{\alpha}$

#### Eavesdropper Attacker

Actually, the attacker may see several valid conversations  $(u_t^i, c^i, \alpha_z^i)_{i=1,2,3,...}$  does "proof of knowledge" hold?

$$\alpha_{t} \stackrel{\mathbb{P}(\alpha)}{\leftarrow} u = g^{\alpha} \qquad \underbrace{V(u)}_{t}$$

$$\alpha_{t} \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_{q}, u_{t} \stackrel{\mathbb{C}}{\leftarrow} g^{\alpha_{t}} \qquad \underbrace{u_{t}}_{t} \xrightarrow{} c \stackrel{\mathbb{C}}{\leftarrow} C$$

$$(c \quad c') \qquad c \stackrel{\mathbb{C}}{\leftarrow} C$$

 $\alpha_{z} \leftarrow \alpha_{t} + \alpha c \mod q$   $\alpha_{z} \qquad \alpha'_{z} = \alpha_{t} + \alpha c \mod q$   $g^{\alpha_{z}} \stackrel{?}{=} u_{t} \cdot u^{c}$ 

If the attacker can return valid respond  $\alpha_z$  for a random c with probability  $\epsilon$ 

it can return valid respond  $\alpha'_z$  for a random c' with probability  $\epsilon - 1/q$  [Theorem 19.1, DS]

We can generate what Eav attacker learns  $(u_t^i, c^i, \alpha_z^i)_{i=1,2,3...}$ Sample  $\alpha_z^i \leftarrow Z_q, c^i \leftarrow Z_q$  compute  $u_t^i = g^{\alpha_z^i}/u^{c^i}$ 

With 
$$c, c'$$
 and 
$$\begin{cases} \alpha_z = \alpha_t + \alpha c \mod q \\ \alpha'_z = \alpha_t + \alpha c' \mod q \end{cases}$$

we can extract  $\alpha$  with probability  $\epsilon(\epsilon - 1/q)$  (which is the discrete logarithm problem)

#### What we have shown: honest verifier zero-knowledge



#### Honest verifier zero-knowledge says that:

without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

#### Schnorr Identification



- **Correctness(Completeness):** If P and V execute the protocol honestly, the proof is accepted.
- Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log)  $\alpha$
- Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

#### Identification protocol --- > Signature



• The key generation

• 
$$\alpha \leftarrow Z_q$$
,  $u = g^{\alpha}$ 

• 
$$sk = \alpha$$
,  $vk = u$ 

• To sign *m* 

• 
$$\alpha_t \leftarrow Z_q$$
,  $u_t = g^{\alpha_t}$ 

• 
$$c = Hash(m, u_t, u)$$

• 
$$\alpha_z = \alpha_t + \alpha c \mod q$$

• Return 
$$\sigma = (u_t, c, \alpha_t)$$

Verification

• 
$$g^{\alpha_z} = ? u_t \cdot u^c$$

Schnorr Signature is UF-CMA secure, under the discrete logarithm assumption

#### Identification protocol --- > Signature



- Schnorr invented Schnorr signature in 1989
- It was covered by U.S. Patent which expired in February 2008.
- In 1991, the National Institute of Standards (NIST) considered a number of viable candidates. Because the Schnorr system was protected by a patent, NIST opted for a more ad-hoc signature scheme: (EC)DSA
- Security: Schnorr > ECDSA
- Deployment: Schnorr < ECDSA

11/3/2024

#### Identification for Decisional Diffie-Hellman ID<sub>DDH</sub>



Given  $(g, u, v = g^{\beta}, w = u^{\beta})$  with witness  $\beta$ , P wants to prove that it knows  $\beta$ 

#### Identification for Decisional Diffie-Hellman (DDH)

Given  $(g, u, v = g^{\beta}, w = u^{\beta})$  with witness  $\beta$ , P wants to prove that it knows  $\beta$ 



- **Correctness(Completeness):** If P and V exact the protocol honestly, the proof is accepted.
- Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log)  $\alpha$
- Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

$$\beta_z \leftarrow Z_q, c \leftarrow Z_q, v_t = \frac{g^{\beta_z}}{v^c}, u_t = g^{\beta_z}/u^c$$

11/3/2024

- Identification protocol could be used to prove knowing something (discrete log)
- Without the fact of knowing something, nothing else is leaked
- Identification protocol could be used to build signature
- Identification protocols from discrete log and DDH

## SIGMA protocol

• Identification protocol is a special case of SIGMA protocol

• We first recall the language and corresponding relation

A NP language  $L \coloneqq \{y \mid \exists x, s. t. (x, y) \in R\}$  Corresponding Relation R

 $y \in L$  if and only if  $\exists$  withness x, such that  $(x, y) \in R$ 

 $(g, u, v, w) \in L_{DDH}$  iff  $\exists$  witness  $\beta$  such that  $v = g^{\beta}$ ,  $w = u^{\beta}$ 

x is called the witness and y is called the statement
## SIGMA protocol

- To proof that P knows witness x of statement y such that  $(x, y) \in R$
- Sigma protocol runs as follows and



- **Correctness(Completeness):** If P and V execute the protocol honestly, the proof is accepted. •
- **Special Soundness:** given valid transection (t, c, z) and (t, c', z'), we could extract x
- **Honest verifier zero-knowledge** says that: without knowing witness x, we can generate (simulate) the valid • transaction efficiently for  $y \in L$ 11/3/2024

Schnorr, Discrete log relation  $\mathcal{R} = \{ (\alpha, u) \in \mathbb{Z}_q \times \mathbb{G} : g^{\alpha} = u \}$ 

DDH relation 
$$\mathcal{R} := \left\{ \left( \beta, (u, v, w) \right) \in \mathbb{Z}_q \times \mathbb{G}^3 : v = g^{\beta} \text{ and } w = u^{\beta} \right\}$$

Given  $G = \langle g \rangle$  of order  $q, h \in G$ , and  $u = g^{\alpha} h^{\beta} \in G$ with witness  $\alpha, \beta$ , prove the following relation

$$\mathcal{R} = \left\{ \left( (\alpha, \beta), u \right) \in \mathbb{Z}_q^2 \times \mathbb{G} : g^{\alpha} h^{\beta} = u \right\}$$

#### Okamoto's protocol

$$\mathcal{R} = \left\{ \left( (\alpha, \beta), u \right) \in \mathbb{Z}_q^2 \times \mathbb{G} : g^{\alpha} h^{\beta} = u \right\}$$

- **Correctness(Completeness):** If P and V execute the protocol honestly, the proof is accepted. ۲
- **Special Soundness:** given valid transection  $(u_t, c, \alpha_z, \beta_z)$  and  $(u_t, c', \alpha'_z, \beta'_z)$ , we could extract  $\alpha, \beta$ •
- Honest verifier zero-knowledge says that: without knowing witness x, we can generate (simulate) the valid • transaction efficiently for  $y \in L$ 11/3/2024

Schnorr, Discrete log relation  $\mathcal{R} = \{ (\alpha, u) \in \mathbb{Z}_q \times \mathbb{G} : g^{\alpha} = u \}$ 

How about prove

$$R_1 \wedge R_2 = \{ (x_1, x_2; h_1, h_2) \in Z_q^2 \times G^2 : h_1 = g^{x_1} \text{ and } h_2 = g^{x_2} \}$$

 $R_1$  and  $R_2$  are Discrete log relations

 $G = \langle g \rangle$  is group of order p

#### AND composition of SIGAMA: Parallel attempt



Run two Schnorr protocols independently???

#### AND composition of SIGAMA: Better solution

How about prove 
$$R_1 \wedge R_2 = \{ (x_1, x_2; h_1, h_2) \in Z_q^2 \times G^2 : h_1 = g^{x_1} \text{ and } h_2 = g^{x_2} \}$$
  
 $h_1 = g^{x_1} \text{ and } h_2 = g^{x_2}$   
Prover  $Verifier$   
 $(x_1 = \log_g h_1, x_2 = \log_g h_2)$   
 $u_1, u_2 \in_R \mathbb{Z}_n$   
 $a_1 \leftarrow g^{u_1}$   
 $a_2 \leftarrow g^{u_2}$   $\xrightarrow{a_1, a_2}$   
 $c \in_R \mathbb{Z}_n$   
 $r_1 \leftarrow_n u_1 + cx_1 \mod q$   
 $r_2 \leftarrow_n u_2 + cx_2 \mod q$   $\xrightarrow{r_1, r_2}$   
 $g^{r_1} \stackrel{?}{=} a_1 h_1^c$   
 $g^{r_2} \stackrel{?}{=} a_2 h_2^c$ 

The same challenge is applied to two proofs

Schnorr, Discrete log 
$$\mathcal{R} = \{ (\alpha, u) \in \mathbb{Z}_q \times \mathbb{G} : g^{\alpha} = u \}$$

AND Composition 
$$R_1 \wedge R_2 = \{ (x_1, x_2; h_1, h_2) \in Z_q^2 \times G^2 : h_1 = g^{x_1} \text{ and } h_2 = g^{x_2} \}$$

#### OR Composition $R_1 \lor R_2 = \{ (x_1 \text{ or } x_2; h_1, h_2) \in Z_q \times G^2 : h_1 = g^{x_1} \text{ or } h_2 = g^{x_2} \}$

 $R_1$  and  $R_2$  are Discrete log relations

#### OR composition of SIGAMA



•  $c = c_1 + c_2$ 

• Simulate a valid transection for unknown witness but known challenge

• Generate the real Schnorr for known witness but unknown challenge

11/3/2024

OR Composition  $R_1 \lor R_2 = \{ (x_1 \text{ or } x_2; h_1, h_2) \in Z_q \times G^2 : h_1 = g^{x_1} \text{ or } h_2 = g^{x_2} \}$ 

**3OR Composition** 

$$R_1 \lor R_2 \lor R_3 = \{ (x_1, x_2 \text{ or } x_3; h_1, h_2, h_3) \in Z_q \times G^2: \\ h_1 = g^{x_1} \text{ or } h_2 = g^{x_2} \text{ or } h_3 = g^{x_3} \}$$

- $c = c_1 + c_2 + c_3$
- Simulate two valid transections for unknown witness but known challenge
- Generate a real Schnorr for known witness but unknown challenge

#### Question 2: AND-OR composition of SIGAMA

| AND Composition | $R_1 \wedge R_2 = \{ (x_1, x_2; h_1, h_2) \in Z_q^2 \times G^2 : h_1 = g^{x_1} \text{ and } h_2 = g^{x_2} \}$       |
|-----------------|---------------------------------------------------------------------------------------------------------------------|
| OR Composition  | $R_1 \lor R_2 = \{ (x_1 \text{ or } x_2; h_1, h_2) \in Z_q \times G^2 : h_1 = g^{x_1} \text{ or } h_2 = g^{x_2} \}$ |

How about relation  $(R_1 \vee R_2) \wedge (R_3 \vee R_4)$ 

 $R_1$ ,  $R_2$ ,  $R_3$  and  $R_4$  are Discrete log relations

The second Assignment, I will give concrete requirement in next lecture.

## Electronic Voting (e-voting)



# OR-composition of $ID_{DDH}$

- We are ready to give such zero-knowledge proof
- Given  $G = \langle g \rangle$ ,  $pk = u = g^s$
- and ciphertext  $v = g^{\beta}$ ,  $e = u^{\beta} \cdot g^{b}$
- Proof the following relation

$$\mathcal{R} := \bigg\{ \ ( \ (b,\beta), \ (u,v,e) \ ) \ : \ v = g^{\beta}, \ \ e = u^{\beta} \cdot g^{b}, \ \ b \in \{0,1\} \ \bigg\}.$$

(u, v, e) is the encryption of 0 or 1 if and only if (g, u, v, e) is a DDH tuple or(g, u, v, e/g) is a DDH tuple

We only need an OR-composition of ID<sub>DDH</sub> to show that (g, u, v, e) is a DDH tuple or(g, u, v, e/g) is a DDH tuple

#### Applications: e-voting

ElGamal Enc for privacy  $G = \langle g \rangle$  $pk \coloneqq u = g^s, sk \coloneqq s$ 



For Alice 
$$v=g^{eta_1}$$
 ,  $e=h^{eta_1}\cdot g^{b_1}$ 

Π

OR-composition proof  $\Pi$  of  $ID_{DDH}$  to show that (g, u, v, e) is a DDH tuple or(g, u, v, e/g) is a DDH tuple



#### A short summary: SIGMA protocol

- Identification protocol is a generalization of Identification protocol
- To proof that P knows witness x of statement y such that  $(x, y) \in R$
- SIGMA for several relations
- OR and AND composition of SIGMA protocol

Applications: e-voting

# Zero-knowledge proof

- Zero-knowledge proof is an extension of SIGMA protocol
- The interactive is not necessary of 3-pass
- The soundness is not necessary of proof-of-knowledge
- The zero-knowledge should be hold for any verifier

 $y \in L$  if and only if  $\exists$  withness x, such that  $(x, y) \in R$ 



- Correctness(Completeness): If  $y \in L$ , P and V execute the protocol honestly, the proof is accepted.
- Soundness: If  $y \notin L$ , for any (computational) P, V accepts with negligible probability
- **Zero-knowledge**: For any V, without knowing witness x, we can generate (simulate) the valid transaction efficiently

 $for y \in L$ 

## Zero Knowledge Proof for NP language

- Let *L* be an NP language
- Prover with input (x, y) wants to prove that  $y \in L$

- if  $y \in L$ , verifier accept
- ▶ if  $y \notin L$ , for any (PPT) prover, verifier will reject
- Zero-knowledge: any verifier learns nothing about the witness x

# Theorem [GMW86] Commitment ---> ZKP for all of NP

[GMW86] O Goldreich, S Micali, A Wigderson, Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems, 1986

## Zero Knowledge Proof for NP

- To prove that ∃ input x such that C(x) = y, where C is any polynomial size circuit.
- Circuit *C* could be:
  - $ax^2 + bx + c$
  - Polynomial function Poly(x)
  - Machine learning algorithms
  - Etc.....

• Let G=(V, E) be graphs on n vertices and define V = {  $v_1$ , ...,  $v_n$ } be the set of vertices, and E = { $e_{i,j}$ :  $\exists edge e_{i,j} between v_i, v_j$ } be the set of edges.

• we say that a graph G is 3-colorable (or  $G \in 3COL$ ) if there is a function  $c : V \rightarrow \{R, G, B\}$ such that for every edge  $(v_i, v_j) \in E, c(v_i) \neq c(v_j)$ 



- Why?
- The reason is that a protocol for 3*COL* actually implies a protocol for all languages in NP, since 3*COL* is NP-complete
- It means that we have a function **Reduce** that on input a NP language instance *y*, outputs a graph G such that

 $y \in L$  iff  $G \in 3COL$ 

what's more, there exists **Reduce'** on input witness x for  $y \in L$  outputs witness for  $G \in 3COL$ 

• This can be used for the prover to convert their proof for any NP into a proof for the 3*COL* protocol.

## A tool: Commitment

- A commitment Com is a 3-tuple algorithms (Setup, Commit, Verify)
  - Setup: Generate public parameters pp
  - Commit(*m*): Compute a commitment *c* to *m* with its opening *d*, and output *c*
  - Verify(*c*,*m*, *d*): indicate the validation of (*m*, *d*) with respect to commitment *c*
- A commitment could be statistical hiding and computational binding, or computational hiding and statistical hiding. For the first one
  - *Hiding*: For any  $m, m' \in \mathcal{M}_{com}$ , their commitments are statistical indistinguishable.
  - *Binding*: No probability polynomial time (PPT) adversary could open a commitment *c* on two different messages.
- Ex: Commit (m) as Hash(m, d) for randomness d, Hash could be SHA256
  - Hiding: random oracle of Hash
  - Biding: collision resistance





- Correctness(Completeness): easy.
- Soundness: If it is not 3-colorable, for any (computational) P, V accepts with probability less than 1 1/|E|
- Implied by the biding of Commit

- (Honest verifier) Zero-knowledge:
- Step 1: Pick random index *i*, *j*
- Step 2: Commit(0), ..., Commit(0), and only two of them (with index *i*, *j*) are different R, G, or B
- When getting (i', j') from verifier, if (i', j') = (i, j) open commit, otherwise return to Step 1
- Imply by the Hiding of Commit

# Theorem [GMW86] Commitment ---> ZKP for all of NP

[GMW86] O Goldreich, S Micali, A Wigderson, Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems, 1986

## Non-interactive Zero Knowledge (NIZK)

- Non-interactive is better than interactive (latency)
- NIZK $\rightarrow$  signature, e-voting, etc.
- NIZK only exists for L in BPP, which is not interesting than NP
- However, with the setup of common random string,...
- Or random oracle...

<sup>11/3/2024</sup> Blum, Feldman, Micali. Non-interactive zero knowledge and its applications Fiat, Shamir: How to prove yourself: practical solutions to identification and signature problems <sup>65/72</sup>



Blum, Feldman, Micali. Non-interactive zero knowledge and its applications 11/3/2024 Fiat, Shamir: How to prove yourself: practical solutions to identification and signature problems 66/72

#### Succinct Non-Interactive Proof (zkSNARK)

- It is better if we have a very small (Succinct) proof
- And the verification of the proof is efficient.
- These proof is called Succinct Non-Interactive Proof (zkSNARK)

#### zk-SNARK/STARK

- Consider the complexity of Verifier.
- Could it be less than computing R(x, w)?????
- YES!!!!

#### PCP Theorem [AS,ALMSS,Dinur]:

NP statements have polynomial-size PCPs in which the verifier reads only O(1) bits.

- Can be made ZK with small overhead [KPT97,IW04]



• Verifiable Outsourcing computation

• Blockchain

We do not want to trust the cloud, but would like to use its power.



Cloud appends a zkSNARK  $\Pi$  to proof that y = f(x)

#### zk-SNARK/STARK

|                                       | SNARKs                             | STARKs                          | Bulletproofs  |
|---------------------------------------|------------------------------------|---------------------------------|---------------|
| Algorithmic complexity: prover        | O(N * log(N))                      | O(N * poly-log(N))              | O(N * log(N)) |
| Algorithmic complexity: verifier      | ~O(1)                              | O(poly-log(N))                  | O(N)          |
| Communication complexity (proof size) | ~O(1)                              | O(poly-log(N))                  | O(log(N))     |
| - size estimate for 1 TX              | Tx: 200 bytes, Key: 50 MB          | 45 kB                           | 1.5 kb        |
| - size estimate for 10.000 TX         | Tx: 200 bytes, Key: 500 GB         | 135 kb                          | 2.5 kb        |
| Ethereum/EVM verification gas<br>cost | ~600k (Groth16)                    | ~2.5M (estimate, no<br>impl.)   | N/A           |
| Trusted setup required?               | YES 😒                              | NO 😂                            | NO 😂          |
| Post-quantum secure                   | NO 😒                               | YES 😄                           | NO 😒          |
| Crypto assumptions                    | DLP + secure bilinear<br>pairing 😒 | Collision resistant<br>hashes 😂 | Discrete log  |

# Thank you