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Topic 2: Zero-knowledge proof

* |dentification protocol and signature

e Sigma protocol

e Zero-knowledge proof

e Zero knowledge proof for all NP
* Non-interactive ZKP
* zkSNARK and applications
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Our aim

* We would like to know what is zero-knowledge proof

* We start from a special case, sigma protocol

* How can we construct zero-knowledge proof?

* What can we do with zero-knowledge proof?

* Recent development of zero-knowledge proof.



Typical proof

* In mathematics and in life, we often want to convince or prove things to
others.

* Typically, if | know that X is true, and | want to convince you of that, | try

to present all the facts | know and the inferences from that fact that
imply that X is true.

* Ex: | know that 26781 is not a prime since itis 113 x 237,

to prove to you that fact, | will present these factor and
demonstrate that indeed 113 x 237 = 26781.



Why Zero-knowledge proof

* Byproduct of a proof is that you gained some knowledge,

* other than that you are now convinced that the statement is true.

* Ex: In the example before, not only are you convinced that 26781 is not a
prime, but you also learned its factorization.

* A zero knowledge proof (Goldwasser, Micali, Rackoff 1982) tries to avoid it.
* Alice will prove to Bob that a statement X is true,

* Bob will completely convinced that X is true, but will not learn anything as a
result of this process. That is, Bob will gain zero knowledge.



Mathematic problem

* Root of Quadratic equation
cax’*+bx+c=0

* Solutions of this problem dates back to 2000 BC, Babylonian
mathematicians give a preliminary solution.

* There are independent findings given by Babylonia, Egypt, Greece, China,
and India.

—b+Vb2+2ac
2a

* Now, we know X =



We assume

e Euclid would like to show to another mathematician he can find roots of
all Quadratic equations,

Euclid mathematician
Pick a, b, ¢
a,b,c
—b +Vb? + 2ac 4 ax’+bx+c=0
x =
2a
X1, X2

* BUT do not want to give any concrete solutions.(which adds “knowledge”
to the mathematician)

* This is what zero-knowledge proof can solve
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Applications: Electronic Voting (e-voting)

Candidates:
Alice,

Bob,

Tom,

Tony,

|
|
Alice,Oor 1 .‘ ,
: Authentication and

: Registration Server 4
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Electronic Voting (e-voting)

Candidates:

For Tony  gPn hPn. gbn, where b, = 0 or1

[
»

Alice, ElGamal Enc for privacy ]

Bob, G=<g> i

Tom — h — S — ! *

’ pk=h=g°sk:=s | N

Tony, | @”
: B e . ﬂ B b EAuthenticatioand d
'&n For Alice g°t,h”1-g”1, whereb; =0orl | Registration Server g
' o iftb : For Bob gﬁz,hﬁ2 - gP2, where b, = 0or1

Hgﬁi’ H(hﬁl . gbi) which is gZBi, (hZBl gai)

an enc of ). b;
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Electronic Voting (e-voting)

Candidates:
Alice, ElGamal Enc for privacy IL
$°br G=<g>

o—— — S -—
Tgnmy’, pk:=h=g%sk:=s

Authentication and

|
|
:
|
|
|
For Alice gﬁl’ hBl : gbl i Registration Server g
|
I
|
|
|
:
|
|
|
|
|

A\ 4

Cheating Voter b; = 1000

Thus, the voter needs to prove this is a ElIGamal enc of 0 or 1
While no knowledge of b, is leaked

This is what Zero-knowledge proof can solve
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ldentification protocol

11/3/2024



|dentification protocol and signature

e ID for dl

 DDH

* Schnorr signatures
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|dentification/Authentication paradigm

vk either public
Alg' G or secret
}/ N
s
User P\ > 4 System V A
(prover) | ¢ (verifier)
@
\_ / N l /
yes/no

Password Auth. sk = vk = pw Public key Auth. sk, vk is public key
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|dentification/Authentication paradigm

G=<g>|Gl=gq

Alg. G
/ X:k ga
/User P\ >/ System V A
(prover) | ¢ (verifier)
@ e
\_ / \ l )
yes/no

P proves the fact that “it knows a such that u = g%”
and nothing else is leaked.
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A toy example: Ali Baba Cave

Bob (Verifier)

&

Magic code to open the door

=

Alice (Prover)
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Alibaba Cave
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Alibaba Cave

o if 3 doesn't know the key, the proof was accepted with 1/2.
- £ learns nothing about the magic code



Repeat the game n times

o if 2 does’t know the key, the proof was accepted with zin

.+ £ learns nothing about the magic code
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|dentification for Discrete logarithm

G=<g>|Gl=gq

(ga)b — gab

gagb — ga+b
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Schnorr Identification

a, =ar+ «a
Alice commits to g%t Bob chooses a challenge e Alice responds with a,
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a,=a;+ «a

o if 2 doesn't know the key, the proof was accepted with 1/2.
- & learns nothing about the magic code (« is covered by «;)
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If g% = g“(w)°

a,=a;+ «a

™ f E doesn't know the key, the proof was accepted with 1/2.

» Repeat the game n times, if ... doesn't know the key, accepted
with 1/2".

= How about choose e « Z,, (q entrances rather than 2)7
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Schnorr Identification

u=g*
P(a) Viu)
a, & Lq, u, < g
u, .

c+C

) c

v, < Oy + aC¢ mod q
az

~

* Challenge space C = Z,,

* Conversation: (ug, ¢, a,) is said to be valid if the verification passes
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Direct Attacker

* An attacker without knowing a would like to pass the verification.

— a
P(a) u=g V (u) .
If the attacker can return valid respond «, for a random ¢
a, < Lg, u, — g : - z
; T u, with probability €
c& C . . / /
e it can return valid respond a', for a random ¢

. J with probability e — 1/q [Theorem 19.1, DS]
«a, +— o, +ac mo
1 a, a,=oa;+ac modq

o, C

gt =u, - u

a, = a; + acmod q
a,=a;+ac'modq

we can find (or extract) a with probability e(e — 1/q)
(which is the discrete logarithm problem)

With ¢, ¢’ and {

[DS] Dan Boneh and Victor Shoup, A Graduate Course in Applied Cryptography
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What we have shown: “proof of knowledge”

* If someone passes the verification of Schnorr Identification,

* We must have the someone knows the discrete logarithm of u = g¢
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Eavesdropper Attacker

Actually, the attacker may see several valid conversations (ué, ct, aé)i_l - does “proof of knowledge” hold?

u=g*“ If the attacker can return valid respond a, for a random ¢
with probability €

U, . ) .
4 o it can return valid respond a’, for a random ¢’
. ¢ with probability e — 1/q [Theorem 19.1, DS]
o, + o, +ac mod q ,
@, Az =0ar+ac modq We can generate what Eav attacker learns (ué, &, aé)izl -

C

az 2. : : - i i
gr = u Sample a; < Z,, ¢! « Z, compute u; = g% /u°

a, = a; + ac mod q
With ¢, ¢’ and / /
a,=a;+ac'modq

we can extract a with probability e(e — 1/q) (which

is the discrete logarithm problem)
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What we have shown: honest verifier zero-knowledge

o, < a, +ac mod q

We can generate what Eav attacker learns (ué, ct, a})i_l -

; ; ; i i
Sample a; < Z,, ¢! « Z, compute u; = g% /u°

Honest verifier zero-knowledge says that:
without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently
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Schnorr Identification

o, + a, +ac mod q

Correctness(Completeness): If P and V execute the protocol honestly, the proof is accepted.
Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) a

Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate

(simulate) the valid transaction efficiently
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|dentification protocol --- > Signature

Pl = g Vi * The key generation
a

(8 ‘(lzq- Uy <_gat * a N Zq’u — g

e sk =a,vk =u

¢ = Hash(m, u;, u)

¢ * Tosighm
o, +— a, + ac mod
q o, > Y at «— ZCI’ut - gat
q*= ; u, - uc * C = HaSh(m, ut, u)

*a, = a; +acmod q
* Return g = (u¢, ¢, ag)

* VVerification
g% =7u; -u°

Schnorr Signature is UF-CMA secure, under the discrete logarithm assumption

11/3/2024
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|dentification protocol --- > Signature

. :
Pla) u=g° v The key generation
a < Lq, uy + g™ ¢ (X<—Zq;u=ga
) e = Hash(mu, ) e
- * Tosighm
o, + o, +ac mod q o | . <—Zq,ut _ g“t
g% Lo, - * ¢ = Hash(m, us, u)
* a, = a; +acmod q
* Return o = (ug, ¢, ag)
Soundness (discrete log) — Unforgeability  ° Verification

Cc

* g% =7u; - u

Hash is random oracle
Honest verifier zero-knowledge =" Chosen Message Attack
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History of Schnorr signature

* Schnorr invented Schnorr signature in 1989
* It was covered by U.S. Patent which expired in February 2008.

* In 1991, the National Institute of Standards (NIST) considered a number
of viable candidates. Because the Schnorr system was protected by a
patent, NIST opted for a more ad-hoc signature scheme: (EC)DSA

e Security: Schnorr > ECDSA
* Deployment: Schnorr < ECDSA

Schnorr, C. P. (1989). "Efficient Identification and Signatures for Smart Cards"



https://doi.org/10.1007%2F0-387-34805-0_22

|dentification for Decisional Diffie-Hellman IDppgy

v=gfw=uf
P(B3, (u,v,w)) V(u,v,w)
B ¢+ ZLg, v, g%, w, +— u’
Uy, W, X
cC
c
B, + B, + Be mod q
B,

B, * c 3, c
g™ = v, -v° and u”* = w, - W°

Given (g,u,v = g#,w = uP) with witness 8, P wants to prove that it knows S
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|dentification for Decisional Diffie-Hellman (DDH)

Given (g,u,v = g#,w = uP) with witness 8, P wants to prove that it knows S

v=gfw=uf
P, (u,v,w)) Viu,v,w)
B, & Lq, v, g‘S‘, w, — u’
vy, W, .
ctC
c
3, — B, + Be mod q
3

g‘“z = U -V alld Ut = w, - w

* Correctness(Completeness): If P and V exact the protocol honestly, the proof is accepted.

« Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) a

* Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate

(simulate) the valid transaction efficiently
Bz
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A short summary

* |dentification protocol could be used to prove knowing something
(discrete log)

* Without the fact of knowing something, nothing else is leaked

* |dentification protocol could be used to build signature

* |dentification protocols from discrete log and DDH



SIGMA protocol
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SIGMA protocol

* |dentification protocol is a special case of SIGMA protocol

* We first recall the language and corresponding relation

A NP language L :={y |3 x,s.t.(x,y) € R} Corresponding Relation R

y € L if and only if 3 withness x, such that (x,y) € R
(9,u,v,w) € Lppy iff 3 witness B such that v = gF,w = uf

x is called the witness and y is called the statement
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SIGMA protocol

* To proof that P knows witness x of statement y such that (x,y) € R
* Sigma protocol runs as follows and

P(x,vy) y €L V(y)

generate commitment ¢
t

R
generate challenge: ¢ < C

generate response z

o2

output accept or reject

* Correctness(Completeness): If P and V execute the protocol honestly, the proof is accepted.
 Special Soundness: given valid transection (t,c,z) and (t,c’,z"), we could extract x

* Honest verifier zero-knowledge says that: without knowing witness x, we can generate (simulate) the valid

transaction efficiently fory € L
11/3/2024 37/72



|dentification protocol is a special case of SIGMA

Schnorr, Discrete log relation R = { (a,u) € ZyxG: g*=u)

DDH relation R = { (8, (u,v,w) ) € Zq X G*: v=¢" and w="1" }
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Other relations

Given G =< g >oforderq, h € G, andu = g*hP € G
with witness «, 3, prove the following relation

R = { ((,B), u) € Zg x G: g°h’ =u }
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Okamoto's protocol

Rz{ ( (o, ), u)EZixG: g*hP =u }

P((a, ), u) V(u)

o & Ly, Be & Ly, u, — g*hP

A

Extension of Schnorr

a, +— o, + acmod q
1'3‘ — ,Bt + BC mod q

* Correctness(Completeness): If P and V execute the protocol honestly, the proof is accepted.
 Special Soundness: given valid transection (u;, ¢, a,, 8,) and (u;, c’,a',, B',), we could extract a, 8

* Honest verifier zero-knowledge says that: without knowing witness x, we can generate (simulate) the valid

transaction efficiently fory € L
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AND composition of SIGAMA

Schnorr, Discrete log relation R — {(0u) €ZyxG: g*=u)}
How about prove Ry ARy = { (x1,%; hy, hy) € ZEXG*: hy = g*1 and h, = g*2}
R, and R, are Discrete log relations
G =< g > is group of orderp
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AND composition of SIGAMA: Parallel attempt

How about prove Ry ARy = { (x1,x3; hy, hy) € Z2XG?: hy = g™ and h, = g*2}

hy = g** and

Prover Verifier
Uy, u2 €R Lin

al (_ gll[

ai,

c1,02 €R Ln
C1,
<—_ I

T $n Ul +C1I1

T,

,
g™ = a h®

Run two Schnorr protocols independently???

11/3/2024 42/72



AND composition of SIGAMA: Better solution

How about prove Ry ARy = { (x1,x3; hy, hy) € Z2XG?: hy = g™ and h, = g*2}

hy = g*t and h, = g*2
Prover Verifier
(x1 =log, by, x9 = log, hy)

uy,u2 €R ZLn

a, < gu‘l
, a, a:
as gug 1, &2
C ER Zn
C
Tl 4—n U1 + crp mod q
1, T
Ty 4—p U2 + o2 mod q 1,72
r ? [
g™t = ahf
)
g™ = azhs

The same challenge is applied to two proofs
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OR composition of SIGAMA

Schnorr, Discrete log

&3
|

{(,u) €ZyxG: g"=u}

AND Composition Ry ARy = {(x1,x3; hy, hy) € Z2XG?: hy = g™ and h, = g*2}

OR Composition RiVR, = {(xq or x5; hq, hy) € Z,, XG%:hy = g*1 or h, = g*2}

R, and R, are Discrete log relations
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OR composition of SIGAMA

How about prove R1VR; = {(xy or x5; hy, hy) € Z; XG*:hy = g*1 or h, = g*2}
- X - X -
Prover hy = g™t orh, = g2 Verifier
(using x9 = log, hs)
The simulation )
C1,T1,U GR Zn
a) <« grlhl_c1
a2 & gug a’l)a2 .
The real Schnorr ’
c €Er Lin
c
Co <nC—C1
C1,C, T, T ?
T2 $n U2 + C2I2 b b 2} ClLtC2=nC
?
g™ = aih{
?
g™ = azhy?

i Cc = Cl + Cz
a valid transection for
11/3/2024 the real Schnorr for
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Question 1: 3 OR composition of SIGAMA

OR Composition RiVR, = {(xq or x5; hq, hy) € Z,, XG*:hy = g*1 or h, = g*2}

30R Composition RiVR,VR3 = { (x4, x, or x3; hy, hy, h3) € Z, X G2
hy = g*t or h, = g*2 or h; = g*3}

¢ C = Cl + Cz + C3
e Simulate two valid transections for unknown witness but known challenge
* Generate a real Schnorr for known witness but unknown challenge

R4, R, and R5 are Discrete log relations
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Question 2: AND-OR composition of SIGAMA

AND Composition Ry ARy = { (x1,x3; hy, hy) € Z2XG?: hy = g™ and h, = g*2}

OR CompOSItlon R1VR2 — { (x1 or X,; hl’ hz) S Zq XGZ: hl = gxl or hz — gxz}

How about relation (R{VR,) A (R3VR,)

R4, R,, R3; and R, are Discrete log relations

The second Assignment, | will give concrete requirement in next lecture.



Electronic Voting (e-voting)

Candidates:
Alice, ElGamal Enc for privacy IL
$°br G=<g>

o—— — S -—
Tgnmy’, pk:=h=g%sk:=s

Authentication and

|
|
:
|
|
|
For Alice gﬁl’ hBl : gbl i Registration Server g
|
I
|
|
|
:
|
|
|
|
|

A\ 4

Cheating Voter b; = 1000

Thus, the voter needs to prove this is a ElIGamal enc of 0 or 1
While no knowledge of b, is leaked

This is what Zero-knowledge proof can solve
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OR-composition of IDppy

We are ready to give such zero-knowledge proof
Given G =< g >,pk=u=g"

and ciphertext v = gf,e = uf - g?

Proof the following relation

R = { ((b,B), (u,v.€)) : v=g", e=u’-¢" be {0,1} }

(u, v, e) is the encryption of 0 or 1 if and only if (g,u, v, e) isa DDH tuple or(g,u,v,e/g) is a DDH tuple

We only need an OR-composition of IDppy to show that (g, u, v, e) is a DDH tuple or(g,u,v,e/g) is a DDH tuple
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Applications: e-voting

ElGamal Enc for privacy
G=<g>
pk:=u=g°sk:==s

\u
=~
-~
~
13
-

Authentication and
Registration Server 4

For Alice v = gﬂl,e = hb1 g

A\ 4

I1

OR-composition proof I1 of IDppy to show that
(g,u,v,e) isa DDH tuple or(g,u,v,e/g) is a DDH tuple
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A short summary: SIGMA protocol

* |dentification protocol is a generalization of Identification protocol
* To proof that P knows witness x of statement y such that (x,y) € R

* SIGMA for several relations
* OR and AND composition of SIGMA protocol

Applications: e-voting



Zero-knowledge proof
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/ero-knowledge proof

» Zero-knowledge proof is an extension of SIGMA protocol

* The interactive is not necessary of 3-pass

* The soundness is not necessary of proof-of-knowledge

* The zero-knowledge should be hold for any verifier



y € L if and only if 3 withness x, such that (x,y) € R

Prover Verifier

a

A 4

a

v

* Correctness(Completeness): If y € L, P and V execute the protocol honestly, the proof is accepted.
* Soundness: If y € L, for any (computational) P, V accepts with negligible probability

» Zero-knowledge: For any V, without knowing witness x, we can generate (simulate) the valid transaction efficiently

fory el

11/3/2024 54/72



/Zero Knowledge Proof for NP language

* Let L be an NP language
* Prover with input (x, y) wants to prove thaty € L

®»ify € L, verifier accept
»ify & L, for any (PPT) prover, verifier will reject
» Zero-knowledge: any verifier learns nothing about the witness x
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/Zero Knowledge Proof (ZKP) for NP

Theorem [GMW86]
Commitment ---> ZKP for all of NP

[GMW86] O Goldreich, S Micali, A Wigderson, Proofs that yield nothing but their validity or all languages in
NP have zero-knowledge proof systems, 1986



Zero Knowledge Proof for NP

* To prove that 3 input x such that C(x) = y, where C is any polynomial
Size circuit.

e Circuit C could be:

e ax®+bx+c
e Polynomial function Poly(x)
* Machine learning algorithms
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/KP for 3-colorable Graphs

* Let G=(V, E) be graphs on n vertices and defineV={v,, ..., v,} be the set
of vertices, and E = {¢; ;: 3 edge e; ; between v;, v;} be the set of edges.

e we say that a graph G is 3-colorable (or Ge 3COL)
if there is a functionc : V - {R,G,B}
such that for every edge (v;, v;) €E, c(v;) # c(v))
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/KP for 3-colorable Graphs

 Why?

* The reason is that a protocol for 3COL actually implies a protocol for all
languages in NP, since 3COL is NP-complete

* |t means that we have a function Reduce that on input a NP language instance
y, outputs a graph G such that

y € L iff G€ 3COL

what’s more, there exists Reduce’ on input witness x for y € L outputs withess
forGe 3COL

* This can be used for the prover to convert their proof for any NP into a proof
for the 3COL protocol.



A tool: Commitment

A commitment Com is a 3-tuple algorithms (Setup, Commit, Verify)
* Setup: Generate public parameters pp
 Commit(m): Compute a commitment ¢ to m with its opening d, and output ¢
* Verify(c,m, d): indicate the validation of (m, d) with respect to commitment c

A commitment could be statistical hiding and computational binding, or
computational hiding and statistical hiding. For the first one

e Hiding: For any m,m’ € Mcom, their commitments are
statistical indistinguishable.

e Binding: No probability polynomial time (PPT) adversary
could open a commitment ¢ on two different messages.

* Ex: Commit (m) as Hash(m, d) for randomness d, Hash could be SHA256
* Hiding: random oracle of Hash
* Biding: collision resistance
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/KP for 3-colorable Graphs

Prover

1. Randomly permute
coloring & send in
Commitment

3. Send open colors for
endpoints.

11/3/2024

Vg

Commit(e)...Commit(e)

Verifier

o

4

(1,4) 2. Pick random edge.

(.avl)a( '9174)

R 4. Accept if colors different.

] v
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/KP for 3-colorable Graphs

V.

Prover v /<Xv2 Verifier
A, Vi
L
1. Randomly permute Commit(e)...Commit(e)
coloring & send in
Commitment 14 2. Pick random edge.
3. Send open colors for
endpcﬁnts. (o,01),(%,v4) 4. Accept if colors different.

CIE v

* Correctness(Completeness): easy.
* Soundness: If it is not 3-colorable, for any (computational) P, V accepts with probability less than 1 — 1/|E]|

* Implied by the biding of Commit
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/KP for 3-colorable Graphs

* (Honest verifier) Zero-knowledge:

* Step 1: Pick random index i, j

* Step 2: Commit(0), ..., Commit(0), and only two of them (with index i, j)
are different R, G, or B

* When getting (i',j') from verifier, if (i’, j") =(i, j) open commit,
otherwise return to Step 1

* Imply by the Hiding of Commit
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A short Summary

[GMWS86] O Goldreich, S Micali, A Wigderson, Proofs that yield nothing but their validity or all languages in
NP have zero-knowledge proof systems, 1986
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Non-interactive Zero Knowledge (NIZK)

* Non-interactive is better than interactive (latency)

* NIZK->signature, e-voting, etc.

* NIZK only exists for L in BPP, which is not interesting than NP

* However, with the setup of common random string,...

e Or random oracle...

Blum, Feldman, Micali. Non-interactive zero knowledge and its applications
Fiat, Shamir: How to prove yourself: practical solutions to identification and signature problems



NIZK assuming random oracle

P(a) u=4yg V(u)
o & Lg, uy g™ . \ c = H(U, Uy, m)
C c&C > NIZK (without m)
\ Signature (with m)
a, + a, +acmod q o \ Fiat-Shamir

2
g% =u, - u°

Blum, Feldman, Micali. Non-interactive zero knowledge and its applications
11/3/2024 Fiat, Shamir: How to prove yourself: practical solutions to identification and signature problems &s/72



Succinct Non-Interactive Proof (zkSNARK)

* [t is better if we have a very small (Succinct) proof

* And the verification of the proof is efficient.

* These proof is called Succinct Non-Interactive Proof (zkSNARK)



ZK-SNARK/STARK

* Consider the complexity of Verifier.

* YES!III

PCP Theorem [AS,ALMSS,Dinur]:
NP statements have polynomial-size PCPs in which the
verifier reads only O(1) bits.

— Can be made ZK with small overhead [KPT97,IW04]
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zkSNARK

* Verifiable Outsourcing computation

e Blockchain
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Verifiable Outsourcing computation

We do not want to trust the cloud, but would like to use its power.

Cloud appends a zkSNARK II to proof that y = f(x)
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Algorithmic complexity: prover

Algorithmic complexity: verifier

Communication complexity (proof

size)
- size estimate for 1 TX

- size estimate for 10.000 TX

Ethereum/EVM verification gas
cost

Trusted setup required?

Post-quantum secure

Crypto assumptions

SNARKSs

O(N * log(N))

Tx: 200 bytes, Key: 50 MB

Tx: 200 bytes, Key: 500 GB

~600k (Groth16)

YES @
NloX--)

DLP + secure bilinear

pairing @

STARKSs
O(N * poly-log(N))

O(poly-log(N))

O(poly-log(N))

45 kB
135 kb

~2.5M (estimate, no
impl.)

NO &
YES @

Collision resistant

hashes @

Bulletproofs
O(N * log(N))

O(N)

O(log(N))

1.5 kb

2.5 kb

N/A

NO &
NloX--)

Discrete log

)




Thank you
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