
Lecture 4: Network Security Principles

-COMP 6712 Advanced Security and Privacy

Haiyang Xue
haiyang.xue@polyu.edu.hk

2024/2/5

mailto:Haiyang.xue@polyu.edu.hk

Network Security Principles

• Recall RSA and Digital Signature

• Authenticated Key Exchange

• Public Key Infrastructure(PKI)

• and Certification Authorities

5/2/2024 2/59

Public key encryption

5/2/2024 3/59

Diffie-Hellman

𝑏←
$
1, … , 𝐺

𝐺 = 〈𝑔〉

𝐵 ← 𝑔"
𝐴

𝐵

𝑎←
$
1, … , 𝐺

𝐾 ← 𝐵# = 𝑔#"

𝐴 ← 𝑔#

𝐾 ← 𝐴" = 𝑔#"

5/2/2024 4

Ratchet Diffie-Hellman in WhatsApp and Signal

𝐴$ ← 𝑔#!
𝐵$ ← 𝑔"!

WhatsApp Server

𝐵% ← 𝑔""

𝐾$% = 𝑔#!""

Adam Bud

𝐴% ← 𝑔#"
𝐾%% = 𝑔#"""

𝐴%𝐴𝐸𝑆256(𝐾!!, Hey Bud)

𝐴𝐸𝑆256(𝐾!!, I"m good…)
𝐾%% = 𝑔#"""

𝐵% 𝐴𝐸𝑆256(𝐾#!, Hey Adam How…)

𝐴𝐸𝑆256(𝐾#!, How…)

𝐾$% = 𝑔#!""

𝐵& ← 𝑔"#

𝐾%& = 𝑔#""#𝐵& 𝐴𝐸𝑆256(𝐾!$, 𝑒𝑚𝑜: 𝑡ℎ𝑢𝑚𝑏)

𝐴𝐸𝑆256(𝐾!$, Are you …)
𝐾%& = 𝑔#""#

𝐴& ← 𝑔## 𝐴&𝐴𝐸𝑆256(𝐾$$, Yes !)

𝐾&& = 𝑔##"# 𝐾&& = 𝑔##"#

5/2/2024 5

𝐊𝐞𝐲𝐆𝐞𝐧

1.

2.

3.

𝐃𝐞𝐜 𝒔𝒌, 𝑪

1.

2.

3.

𝐄𝐧𝐜 𝒑𝒌,𝑴

1.

2.

3.

4.

5.

ElGamal

𝐺 = 〈𝑔〉

return 𝐴, 𝐶

𝐴 ← 𝑔#

𝐴, 𝐶

𝐵

𝑍 ← 𝐴" = 𝑔#"

return𝑀

𝑠𝑘 =
𝑝𝑘 =

𝑏←
$
1, … , 𝐺

return 𝑠𝑘, 𝑝𝑘

𝐵 ← 𝑔"

ElGamal. Enc ∶
ElGamal. Dec ∶

𝐺×𝐺 → 𝐺×𝒞
𝒁!×𝐺×𝐺 → 𝐺

𝑎←
$
1, … , 𝐺

𝑀 ← 𝐶/𝐾
𝐾 ← 𝐵# = 𝑔#"

𝐶 ← 𝐾 ⋅ 𝑀

5/2/2024 6

RSA in 1977

Ron Rivest Leonard AdlemanAdi Shamir

• The RSA encryption scheme

𝑐 = 𝐸 (𝑚) = 𝑚! mod𝑛

5/2/2024 7/59

Euler’s Theorem

• 𝒁5∗ ,⋅ : 𝒁5∗ = (𝑝 − 1) 𝑒 = 1

• 𝒁7∗ ,⋅ : 𝒁7∗ = 𝜙 𝑛 𝑒 = 1

Theorem: if 𝐺,∘ is a finite group, then for all 𝑔 ∈ 𝐺:

𝑔 ' = 𝑒

Fermat’s theorem: if 𝑝 is prime, then for all 𝑎 ≠ 0 mod𝑝 :

𝑎()% ≡ 1 mod𝑝

Euler’s theorem: for all positive integers 𝑛, if gcd 𝑎, 𝑛 = 1 then

𝑎* + ≡ 1 mod𝑛

5/2/2024 8/59

𝒁"∗ = invertible elements in 𝒁" = 𝑎 ∈ 𝒁" gcd 𝑎, 𝑛 = 1

𝒁!∗ ,⋅ is a group of order 𝜙 𝑛 !

𝑎A B ≡ 1 mod𝑛

𝑛 ← 𝑝 ⋅ 𝑞 𝜙 𝑛 = 𝑝 − 1 𝑞 − 1

𝐶 ← 𝑀, mod𝑛𝑀 𝑀 ← 𝐶- mod𝑛RSA Enc
𝐄𝐧𝐜 𝐃𝐞𝐜

5/2/2024

Structure for RSA

𝑒𝑑 = 1mod𝜙 𝑛

9

𝐊𝐞𝐲𝐆𝐞𝐧

1. 𝑝, 𝑞←
$
two random	prime numbers

2. 𝑛 ← 𝑝 ⋅ 𝑞

3. 𝜙 𝑛 = 𝑝 − 1 𝑞 − 1

4. choose 𝑒 such	that gcd 𝑒, 𝜙 𝑛 = 1

5. 𝑑 ← 𝑒&! mod𝜙 𝑛

6. 𝑠𝑘 ← 𝑑 𝑝𝑘 ← 𝑛, 𝑒

7. return (𝑠𝑘, 𝑝𝑘)

𝐃𝐞𝐜 𝑠𝑘 = 𝑑, 𝐶 ∈ 𝒁'∗

1. 𝑀 ← 𝐶) mod𝑛

2. return𝑀

𝐄𝐧𝐜 𝑝𝑘 = 𝑛, 𝑒 ,𝑀 ∈ 𝒁'∗

1. 𝐶 ← 𝑀* mod𝑛

2. return 𝐶

Textbook RSA

𝐶

𝑝𝑘

RSA. Enc ∶ 𝒁$×𝒁% "
∗ ×𝒁"∗ → 𝒁"∗

RSA. Dec: 𝒁% "
∗ ×𝒁"∗ → 𝒁"∗

𝒫𝒦 ℳ 𝒞

𝒮𝒦 𝒞 ℳ

Common choices of 𝑒: 3, 17, 65 537
11$ 10001$ 1 0000 0000 0000 0001$

5/2/2024 10

RSA in practice

• Textbook RSA is deterministic ⟹ cannot be IND-CPA secure

• How to achieve IND-CPA, IND-CCA?
• pad message with random data before applying RSA function

• PKCS#1v1.5 (RFC 2313)

• RSA-OAEP (RFC 8017)

• Do not use Textbook RSA
• RSA encryption not used much in practice anymore

𝑀

𝑟 || 𝑀

𝐶

Pad

𝑋 ↦ 𝑋,mod𝑛

256 bits

2048 bits

5/2/2024 11/59

A short summary

• We can build IND-CPA secure ElGamal scheme based on DDH assumption

• Padding with randomness, we can transfer Textbook RSA to IND-CPA
scheme

5/2/2024 12/59

Digital Signature

5/2/2024 13/59

Achieving integrity: MACs

InternetAlice
Bob

Adversary

K K

Tag
M, T

Vrfy

M / ⊥

Tag : tagging algorithm (public)

Vrfy: verification algorithm (public)

K : tagging / verification key (secret)

M
T

5/2/2024 14

Achieving integrity: digital signatures

InternetAlice
Bob

Adversary

sk vk

Sign Vrfy

M / ⊥

Sign : tagging algorithm (public)

Vrfy : verification algorithm (public)

sk : signing key (secret)

vk : verification key (public)

M
M, σσ

5/2/2024 15

Digital signatures vs. MACs

• Digital signatures can be verified by anyone

• MACs can only be verified by party sharing
the same key

• Non-repudiation: Alice cannot deny having created 𝜎
• But she can deny having created 𝑇 (since Bob could have done it)

Digital signature

MAC

5/2/2024 16/59

Digital signatures – syntax

KeyGen ∶ () → 𝒮𝒦×𝒱𝒦

A digital signature scheme is a tuple of algorithms Σ = (KeyGen, Sign, Vrfy)

Sign ∶ 𝒮𝒦×ℳ → 𝒮 Vrfy ∶ 𝒱𝒦×ℳ×𝒮 → {0,1}
Sign 𝑠𝑘,𝑀 = Sign./ 𝑀 = 𝜎 Vrfy 𝑣𝑘,𝑀, 𝜎 = Vrf𝑦0/ 𝑀, 𝜎 = 1/0

17

Correctness: for all 𝑠𝑘, 𝑝𝑘 ← KeyGen:

Vrfy 𝑣𝑘,𝑀, Sign 𝑠𝑘,𝑀 = 1

Adversary

Sign
𝑀, 𝜎

𝑀 1/0Vrfy
𝜎

𝑠𝑘, 𝑣𝑘
$

𝑠𝑘 𝑣𝑘

KeyGen

5/2/2024 17

Signature: unforgeability

unforgeable

𝜎Z, 𝜎[, …
unforgeable

𝜎∗

5/2/2024 18

𝒁"∗ = invertible elements in 𝒁" = 𝑎 ∈ 𝒁" gcd 𝑎, 𝑛 = 1

𝒁!∗ ,⋅ is a group of order 𝜙 𝑛 !

𝑎A B ≡ 1 mod𝑛

𝑛 ← 𝑝 ⋅ 𝑞 𝜙 𝑛 = 𝑝 − 1 𝑞 − 1

𝐶 ← 𝑀, mod𝑛𝑀 𝑀 ← 𝐶- mod𝑛RSA Enc
𝐄𝐧𝐜 𝐃𝐞𝐜

𝜎 ← 𝑀- mod𝑛𝑀 = 𝜎, 𝑀RSA Sign
𝐕𝐫𝐟𝐲 𝐒𝐢𝐠𝐧

5/2/2024

𝑒𝑑 = 1mod𝜙 𝑛

19

𝐊𝐞𝐲𝐆𝐞𝐧

1. 𝑝, 𝑞←
$
two random	prime numbers

2. 𝑛 ← 𝑝 ⋅ 𝑞

3. 𝜙 𝑛 = 𝑝 − 1 𝑞 − 1

4. choose 𝑒 such	that gcd 𝑒, 𝜙 𝑛 = 1

5. 𝑑 ← 𝑒&! mod𝜙 𝑛

6. 𝑠𝑘 ← 𝑛, 𝑑 𝑣𝑘 ← 𝑛, 𝑒

7. return (𝑠𝑘, 𝑣𝑘)

𝐒𝐢𝐠𝐧 𝑠𝑘 = 𝑛, 𝑑 ,𝑀 ∈ 𝒁'∗

1. 𝜎 ← 𝑀) mod𝑛
2. return 𝜎

Textbook RSA signatures

𝑀, 𝜎

𝑣𝑘

RSA. Sign: 𝒁$×𝒁% "
∗ ×𝒁"∗ → 𝒁"∗

RSA. Vrfy:

𝒫𝒦

ℳ 𝒮𝒮𝒦

ℳ

𝒁$×𝒁% "
∗ ×𝒁"∗×𝒁"∗ → 1,0

𝒮

𝐕𝐫𝐟𝐲 𝑣𝑘 = 𝑛, 𝑒 ,𝑀 ∈ 𝒁'∗ , 𝜎

1. if 𝜎* = 𝑀mod𝑛 then
2. return 1
3. else
4. return	0

𝜎, = 𝑀-, = 𝑀,- 123 * + = 𝑀mod𝑛= 𝑀%

𝑑 = 𝑒&!mod𝜙 𝑛 ⟺ 𝑒𝑑 = 1mod𝜙 𝑛

5/2/2024 20

Insecurity of Textbook RSA signature

Given 𝜎! = 𝑀!
" , 𝜎# = 𝑀#

"

𝜎!𝜎# = 𝑀!𝑀#
"𝑚𝑜𝑑 𝑛 is a signature of 𝑀Z𝑀[𝑚𝑜𝑑 𝑛

Many other attacks exist

5/2/2024 21/59

𝐊𝐞𝐲𝐆𝐞𝐧

1. 𝑝, 𝑞←
$
two random	prime numbers

2. 𝑛 ← 𝑝 ⋅ 𝑞

3. 𝜙 𝑛 = 𝑝 − 1 𝑞 − 1

4. choose 𝑒 such	that gcd 𝑒, 𝜙 𝑛 = 1

5. 𝑑 ← 𝑒&! mod𝜙 𝑛

6. 𝑠𝑘 ← 𝑛, 𝑑 𝑣𝑘 ← 𝑛, 𝑒

7. return (𝑠𝑘, 𝑣𝑘)

RSA-FDH:Hash-then sign paradigm

RSA. Sign: 𝒁$×𝒁% "
∗ × 0,1 ∗ → 𝒁"∗

RSA. Vrfy:

𝒫𝒦

ℳ 𝒮𝒮𝒦

ℳ

𝒁$×𝒁% "
∗ × 0,1 ∗×𝒁"∗ → 1,0

𝒮

𝐻 ∶ 0,1 ∗ → 𝒁"∗

𝑀, 𝜎

𝑣𝑘

𝐒𝐢𝐠𝐧 𝑠𝑘 = 𝑛, 𝑑 ,𝑀 ∈ 𝒁'∗

1. 𝜎 ← 𝐻(𝑀)) mod𝑛
2. return 𝜎

𝐕𝐫𝐟𝐲 𝑣𝑘 = 𝑛, 𝑒 ,𝑀 ∈ 𝒁'∗ , 𝜎

1. if 𝜎* = 𝐻 𝑀 mod𝑛 then
2. return 1
3. else
4. return	0

5/2/2024 22

RSA-FDH: Hash-then sign paradigm

Theorem: For any UF-CMA adversy 𝐴 against hashed RSA making 𝑞 SIGN#$ ⋅ queries, there is an algorithm 𝐵
solving the RSA-problem:

𝐀𝐝𝐯%&',)*+–-./ 𝐴 ≤ 𝑞 ⋅ 𝐀𝐝𝐯!,0%&' 𝐵

where 𝐻 is assumed perfect*

* H is assumed to be random oracle, which is out of the scope
of this course. Refer to [KL] Section 12.4 for the formal proof

5/2/2024 23

From the view of attack

Given 𝜎! = 𝐻 𝑀!
" , 𝜎# = 𝐻 𝑀#

"

𝜎!𝜎# = 𝐻 𝑀! 𝐻(𝑀#) "𝑚𝑜𝑑 𝑛 is a signature of some 𝑚??

Find m such that H m = H M& H(M')!!!!! One-wayness of H

5/2/2024 24/59

Digital signature using in practice

• RSA signature
• RSAwithSHA-256,382,512 (PKCS #1 V2.1, RFC 6594)

• ECDSA signature
• ECDSA256,384,512 (NIST FIPS 186-4)
• EdDSA (RFC 6979)

• Schnorr signature

5/2/2024 25/59

A short summary

• Hash-then sign paradigm of RSA gives a secure signature

• There are Discrete-log-based signatures, ECDSA, and Schnorr

5/2/2024 26/59

Primitive Functionality + syntax Hardness assumption Security Examples

Diffie-Hellman Derive shared value (key) in a
cyclic group
𝐴+ = 𝑔,+ = 𝐵,

Discrete logarithm (DLOG)
Decisional Diffie-Hellman (DDH)

𝒁-∗ ,⋅ −DH
𝐸 𝑭- , + −DH

RSA function One-way trapdoor function/permutation Factoring problem
RSA-problem

Textbook RSA

Public-key
encryption

Encrypt variable-length input
Enc ∶ 𝒫𝒦×ℳ → 𝒞

Decisional Diffie-Hellman (DDH)
Factoring problem
RSA-problem

IND-CPA

IND-CCA

ElGamal
Padded RSA

Digital
signatures

Sign ∶ 𝒮𝒦×ℳ → 𝒮
Vrfy ∶ 𝒱𝒦×ℳ×𝒮 → 1,0

RSA-problem
Discrete logarithm (DLOG)

UF-CMA Hashed-RSA
ECDSA
Schnorr

5/2/2024 27/59

Assignment 1 (Deadline 10 March)

• Implement the ElGamal Enc algorithm in Sage
• submit the code
• Provide “known answer-test” (KAT) values （i.e., example of pk, sk, m and c）

• Implement the Textbook RSA signature in Sage
• submit the code
• And show the attack that if 𝜎q = 𝑀qr, 𝜎s = 𝑀s

r, then 𝜎q 𝜎s is the Textbook RSA
signature of 𝑀q𝑀s

• Provide “known answer-test” (KAT) values (i.e., example of vk=(n, e), sk=d, m and
σ）

• Write a report about the algorithms and implementation
• Assignment 1 will be available on the blackboard

5/2/2024 28/59

Network security

5/2/2024 29/59

• authenticated key exchange

• public key infrastructure (PKI)

• and certification authorities

5/2/2024 30/59

Diffie-Hellman Key Exchange

𝐴 = 𝑔(

𝐵 = 𝑔)

K ← 𝐵(= 𝑔()

𝐺 = 〈𝑔〉
public

K ← 𝐴) = 𝑔()

Security (given 𝐺, 𝑔, 𝐴, 𝐵):
•Must be hard to distinguish K ← 𝑔#" from random key

K ≈4 random key???

Capability:
Passive adversary

Aim:

5/2/2024 31/59

Diffie-Hellman Key Exchange

𝐴 = 𝑔(

𝐵 = 𝑔)

K ← 𝐵(= 𝑔()

𝐺 = 〈𝑔〉
public

K ← 𝐴) = 𝑔()

K ≈4 random key???

Capability:
Active adversary?

Aim:

5/2/2024 32/59

Diffie-Hellman: man-in-the-middle attack

𝑎←
$
1,… , 𝐺 𝑏←

$
1,… , 𝐺

𝐴 = 𝑔(

𝐵 = 𝑔)

𝐺 = 〈𝑔〉

K′ ← 𝐴+ = 𝑔(+ K′, ← 𝐵- = 𝑔-)

AES AES𝑀 𝑀 𝑀

Alice

K ← 𝐵(= 𝑔() 𝑦𝑌 = 𝑔+

K′ ← 𝑌(= 𝑔(+

K ← 𝐴) = 𝑔()𝑥 𝑋 = 𝑔-

K′, ← 𝑋) = 𝑔-)

Capability:
Adaptive adversary

Bank

5/2/2024 33/59

Active Adversary

• Adversary has complete control of the network:
• Can modify, inject and delete packets
• Like the man-in-the-middle attack

• Moreover, some internet users are honest and others are corrupted
• Corrupt users are controlled by the adversary
• Key exchange with corrupt users should not “affect” other sessions

A B

…
…

D

E

corrupt

5/2/2024 34/59

Authenticated Key Exchange (AKE)

• key exchange secure against active adversaries
• AKE protocol should allow two users to establish a shared key, and

ensure that they are talking with whom they plan to talk with

Capability:
Active adversary?

AKE

5/2/2024 35/59

Trusted Third Party

All AKE protocols require a TTP to certify user identities.

Registration process:

Alice BankTTP
𝑣𝑘uv

I am Alice, proof
This is my vk 𝑝𝑘#564,

Cert/12-3 = Sign(sk45, Alice, pk is 𝑝𝑘56740)

I am Bank, proof
This is my pk 𝑝𝑘"#+/

Cert8/9: = Sign(sk45, Bank, pk is 𝑝𝑘;5!$)

5/2/2024 36/59

AKE-syntax

Alice Bank

TTP
𝑣𝑘uv

Cert/1
2-3

Cert8/9:

𝑝𝑘#564, 𝑝𝑘"#+/
Cert789:; Cert<7=>

AKE

K, bank K, Alice

AES(K, data of Alice)

AES(K, data of Bank)
5/2/2024 37/59

Basic AKE security (very informal)

• Suppose Alice successfully completes an AKE to obtain (K, Bank)

• If Bank is not corrupt then:

• Authenticity for Alice: (similarly for Bank)
• If Alice’s key K is shared with anyone, it is only shared with Bank

• Secrecy for Alice: (similarly for Bank)
• To the adversary, Alice’s key K is indistinguishable from random (aim)

• Consistency: if Bank completes AKE then it obtains (K, Alice)

5/2/2024 38/59

Three levels (core) security of AKE:

• Static security: previous slide

• Forward secrecy: static security, and if the adversary learns 𝑠𝑘jk7l at
time T then all sessions with Bank before T remain secure.

• Hardware Security Module (HSM): Forward secrecy, and if adversary
queries an HSM holding 𝑠𝑘jk7l n times, then at most n sessions are
compromised.

A …

D

E

corrupt

𝑠𝑘"#+/

5/2/2024 39/59

One-sided AKE: syntax

• only one side has a
certificate

• three security
levels.

Alice Bank

TTP
𝑣𝑘uv

Cert8/9:

𝑣𝑘"#+/
Cert<7=>

One side AKE

K, bank
K, Alice

AES(K, data of Alice)

AES(K, data of Bank)
5/2/2024 40/59

Protocol #1 Building blocks

• Bank has Certmnop contains 𝑝𝑘jk7l

• Encjk7l: IND-CCA secure PKE using Bank’s public key
Bank keeps 𝑠𝑘jk7l as the secret encryption key

• Signkqrst / Signjk7l : UF-CMA secure signature of Alice/Bank

• AES encryption scheme

5/2/2024 41/59

Protocol #1

Alice Bank

𝑣𝑘"#+/𝑠𝑘"#+/ Cert<7=>

K, bank K, Alice

Is it Bank?
Is it Alice?

𝑐 ← EncyvBz(K, r)

r Cert{|}~

decrypt(c),
check correct
check sign 𝜎

K ← 𝒦

𝑠𝑘#564,𝑣𝑘#564,
Cert789:;

𝜎 ← Signv��u�(r, c, Bank) Cert./012

• Theorem: Protocol #1 is a statically secure AKE

• Informally: if Alice and Bank are not corrupt then we have
(1) secrecy for Alice\Bank and (2) authenticity for Alice\Bank

AKE1 of section 21.2 in A Graduate Course in Applied Cryptography

5/2/2024 42/59

http://toc.cryptobook.us/

Protocol #1 problem: no forward secrecy

Alice Bank

𝑣𝑘"#+/𝑠𝑘"#+/ Cert<7=>

K, bank K, Alice

Is it Bank?
Is it Alice?

𝑐 ← EncyvBz(K, r)

r Cert{|}~

decrypt(c),
check correct
check sign 𝜎

K ← 𝒦

𝑠𝑘#564,𝑣𝑘#564,
Cert789:;

𝜎 ← Signv��u�(r, c, Bank) Cert./012

Suppose a year later adversary obtains 𝑠𝑘yvBz
⇒ can decrypt all recorded traffic

Protocol #1 is used in TLS 1.2 not TLS 1.3

AKE1 of section 21.2 in A Graduate Course in Applied Cryptography5/2/2024 43/59

http://toc.cryptobook.us/

Protocol #2: HSM Security

Forward secrecy, and
n queries to HSM should compromise at most n sessions

AKE4 of section 21.2 in A Graduate Course in Applied Cryptography

5/2/2024 44/59

http://toc.cryptobook.us/

Protocol #2

Alice
Bank

𝑣𝑘"#+/𝑠𝑘"#+/ Cert<7=>

K, bank
K, Alice

Is it Bank? Is it Alice?
pk

(𝑝𝑘, 𝑠𝑘) ⟵ 𝐺𝑒𝑛

c = Enc(pk, (K, kq, ks))

K ← 𝒦
𝑘%||𝑘& ←𝒦

𝑐& = AES(𝑘&; Cert3.45, 𝑆𝑖𝑔𝑛)("6 𝑝𝑘, 𝑐)Dec c and get K, k%k&

Dec 𝑐% with k%
Check Sign

Delete 𝑠𝑘

𝑐' = AES(k'; Cert./012, 𝑆𝑖𝑔𝑛(789: 𝑝𝑘, 𝑐)
Dec 𝑐& with k&
Check Sign

5/2/2024
Main point: need to sign ephemeral pk from client
⇒ past access to HSM will not compromise current session

𝑣𝑘#564,
Cert789:;

45/59

Protocol #4 one side-use Diffie-Hellman instead of PKE

Alice
Bank

𝑣𝑘"#+/𝑠𝑘"#+/ Cert<7=>

K, bank K, Alice

Is it Bank? Is it Alice?
𝑔v

gy K||k?
← 𝐻(𝑔#")

c, = AES(k,; Cert3.45, 𝑆𝑖𝑔𝑛)("6 𝑝𝑘, 𝑐)
K||k? ← 𝐻(𝑔#")

Dec c′ with k′
Check Sign

Delete 𝑎 Delete 𝑏

[variant of TLS 1.3]
5/2/2024 46/59

A short summary

• AKE requires TTP to certify user identities

• Security: static security, Forward secrecy, HSM secrecy

• We can build secure AKE via PKE, signature, and/or, AES

5/2/2024 47/59

Problem: public key infrastructure (PKI)

• A single TTP

• Single point of failure
• What if TTP is corrupted?

• How should we deploy the trust
of certification?

• How does Bank communicate with
TTP to get Cert_bank?

5/2/2024 48/59

TTP: Certification Authorities

• Digital Certification

Cert"#+/ = Sign(sk4# , Bank?s public (sign) key is 𝑣𝑘"#+/; URL ishttps://www. hangseng. com/)

TTP
𝑣𝑘uv

sk4#

Any one with 𝑣𝑘4# can verify the Cert"#+/

5/2/2024 49/59

TTP: Certification Authorities

• Subject Name
• Who’s CA

• Issuer Name
• Who gives this CA
• Sign name
• Valid

• PK information
• pk
• What is the pk is used
• Key size

5/2/2024 50/59

Certification Authorities(CA)

• How should I get the 𝑣𝑘sk of TTP?
• a root CA’s public key is provided together with the browser/System

TTP
𝑣𝑘uv

5/2/2024 51/59

Multiple CAs

A
Cert

B
Cert

C
Cert1
Cert2

E
Cert

F
Cert

G
CertD

Cert

• Reduce the risk of single point of failure

5/2/2024 52/59

Authentication Chain

We could build the trust of certificate chains from a single Root CA

5/2/2024 53/59

Authentication Chain

5/2/2024 54/59

Root CA in Mac OS

5/2/2024 55/59

Root CA in Windows

• Root CA in windows
• Select Run from the Start menu, and then enter certlm.msc. The Certificate

Manager tool for the local device appears.

5/2/2024 56/59

Root CA in web browser

• chrome://settings/security

• Firefox

5/2/2024 57/59

Summary

• Recall RSA and Digital Signature

• Authenticated Key Exchange
• Public Key Infrastructure(PKI)
• and Certification Authorities

• For your lecture notes, please refer to
• [KL] Section 12.7

Dan Boneh and Victor Shoup, A Graduate Course in Applied
Cryptography, Section 22
[Du] Section 24

5/2/2024 58/59

http://toc.cryptobook.us/
http://toc.cryptobook.us/

Thank you
Happy Chinese New Year

5/2/2024 59/59

