# Lecture 1: Course Overview

-COMP 6712 Advanced Security and Privacy

Haiyang Xue haiyang.xue@polyu.edu.hk 2024/1/15

- Hello
- It is the Second time this course is taught at PolyU.
- Last year, we have 16 students.
- I was expecting less students, but this year we have 45
- In the following 4 months, hope we will learn together....

- <u>haiyang.xue@polyu.edu.hk</u> find the instructor Haiyang XUE
- TA: Xun LIU, <u>compxun.liu@connect.polyu.hk</u>
- TA: Shenxing WEI, shenxing.wei@connect.polyu.hk
- Blackboard
  - We will use Blackboard for announcements
  - Use this to reach all course staff and students
- Zoom: the link and password posted in Blackboard

### Course website

- <u>https://haiyangxc.github.io/hyxue/teaching/comp6712-24.html</u>
- Almost everything: syllabus, grading, final exam...
- I will continuously update slides/lecture notes/readings on the website

COMP6712 Advanced Security and Privacy 2023/24 Semester 2 Department of Computing, PolyU

#### **General Information**

| • Venue: Y302                                            |
|----------------------------------------------------------|
| <ul> <li>Time: Monday, 18:30-21:20, week 1-13</li> </ul> |
| · Instructor: Haiyang Xue, haiyang xue@polyu.edu.hk      |
| • TA:                                                    |
| • xxx                                                    |
| • <b>XXX</b>                                             |

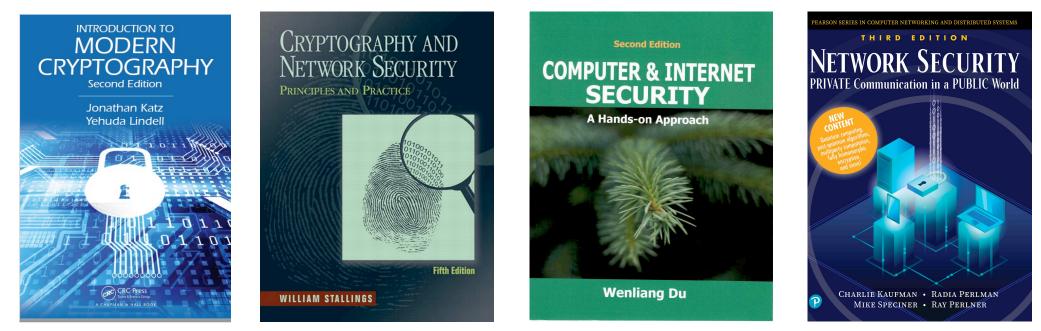
#### Outline

This course will cover the most important features of security and privacy issues. The topics include network security, computer security and privacy-preserving computation (aka secure computation), and relevant knowledg ryptography and advanced privacy-enhancing technologies. A guest lecture on security and privacy in Blockchain is also included. Refer to the syllabus for details.

#### Updating Announcements

Previous Course 2022/23-2

#### Syllabus


#### The syllabus [pdf] is subject to change, and I will continuously update it as the semester progresses.

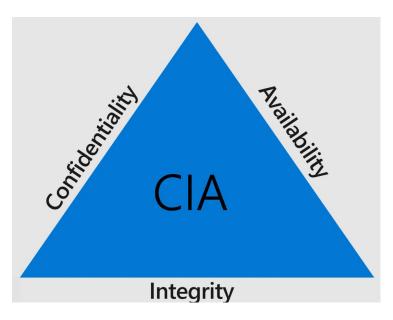
| Date           | Topics\slides                       | Outline                                                                                        | Readings                                                                                                                                                                                                                                                                                                                                                      | Lecture notes               |
|----------------|-------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Week 1: Jan 15 | Course Overview [ <u>slides]</u>    | course plan, reading materials, grading, a brief<br>introduction to every topic                | [Sta] William Stallings, Cryptography and Network Security: Principles<br>and Practice<br>[Du] Wenliang Du, Computer Security: A Hands-on Approach<br>[KPS] Charlie Kaufman, Radia Perlman, and Mike Speciner, Network<br>Security: Private Communication in a Public World<br>[KL] Jonathan Katz, and Yehuda Lindell, Introduction to Modern<br>Cryptography |                             |
| Week 2: Jan 22 | Basic Cryptography 1: Symmetric-key | symmetric encryption, one-time pad, blockcipher,<br>hash function MAC authenticated encryption | [KL] Section 2-7<br>[Std] Chapter 3, 5, 6, 7, 11, 12<br>Goldreich Foundation of Cryntography II. Section 5.3.1, 5.3.2, 5.3.3                                                                                                                                                                                                                                  | Lecture 2 by<br>Haiyang Xue |



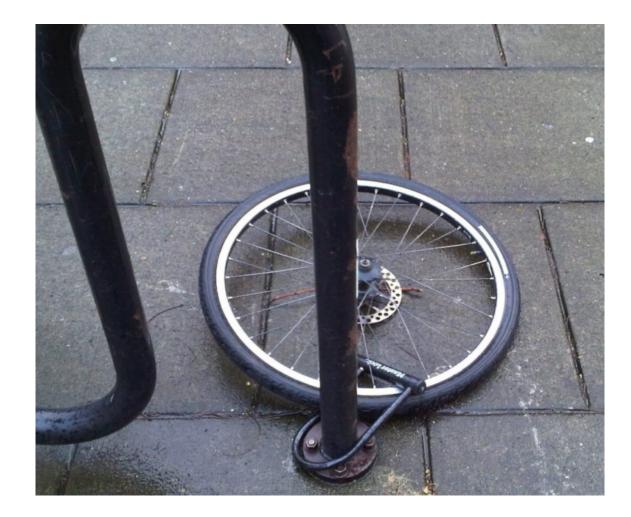
### Course Materials: text books

- [KL] Jonathan Katz, and Yehuda Lindell, Introduction to Modern Cryptography
- [Sta] William Stallings, Cryptography and Network Security: Principles and Practice
- [Du] Wenliang Du, Computer Security: A Hands-on Approach
- [KPS] Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security: Private Communication in a Public World




### Course Materials: lecture notes

- Google
  - Security and privacy + lecture notes or course or subject
  - Cybersecurity + lecture notes or course or subject
  - Computer security + ...
  - cryptography+
- You may find
  - Jonathan Katz, Computer and Network Security
  - Ronald Rivest, Network and Computer Security
  - Etc.


- Some of my slides are also based on the lecture notes:
  - Jonathan Katz, Computer and Network Security
  - Yoshi Kohno, Computer Security
  - Dan Boneh and John Mitchell, Computer and Network Security
  - etc....
- Thanks to Yoshi Kohno, Dan Boneh, Jonathan Katz, Håkon Jacobsen, and many others for sample slides and materials ...
- Please feel free to use and distribute my slides.

- System Correctness
  - Good input/behavior  $\Rightarrow$  Desired output
  - It is better to have more features
- Security
  - Bad input/behaviors ⇒ Bad output
  - Even attacker supplies unexpected input, system does not fail in certain ways
  - More features  $\Rightarrow$  a higher chance of attacks

- Basic Goals (CIA)
  - **Confidentiality**: Information only available to authorized parties
  - Integrity: Information is precise, accurate, modified only in acceptable ways, consistent, meaningful, and usable
  - Availability: Services provide timely response, fair allocation of resources, quality of service



### What is Security?

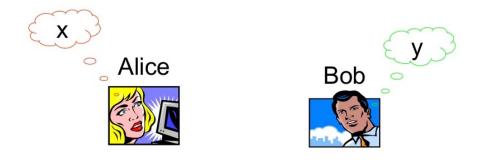


https://www.bicyclelaw.com/bicycle-safety/how-to-lock-your-bike/

### What is Privacy?

• Generally, security concerns on protecting data from internal and external attackers,

- While privacy focuses on the use and governance of (personal) data
  - Data is shared and used properly

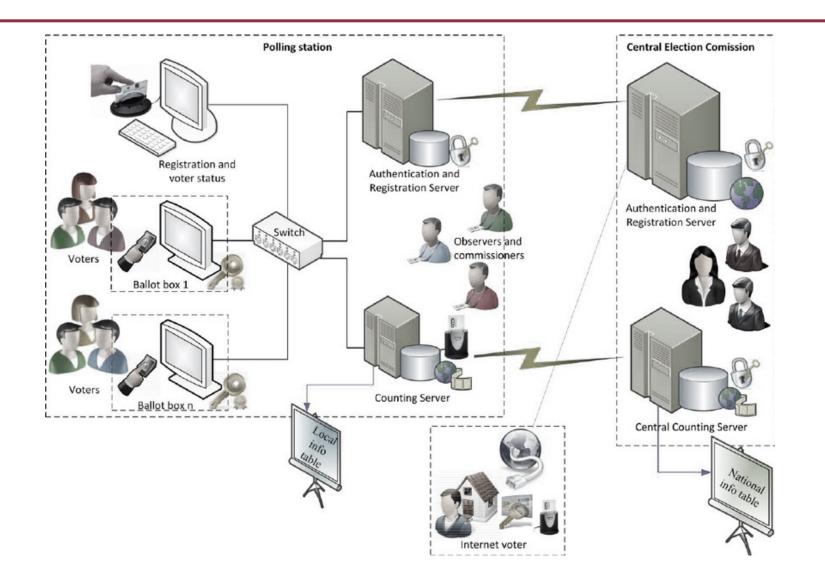





https://www.varonis.com/blog/data-privacy

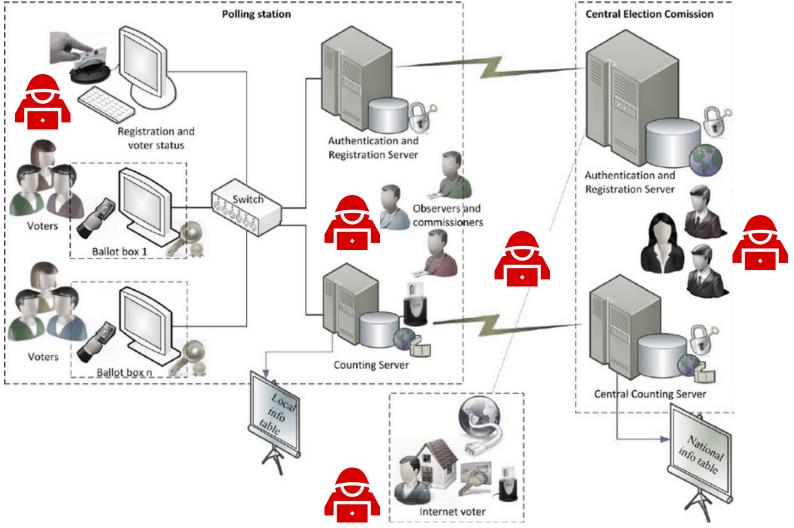
### What is Privacy?

- Assume Alice is a millionaire; Bob is also rich
- Security
  - Who want to steal my money? And how
  - Who want to destroy my money? And how
  - How to protect the money?
- Privacy
  - They want to know who is richer,
  - but do not want to leak how much money they have (i.e., x, y)



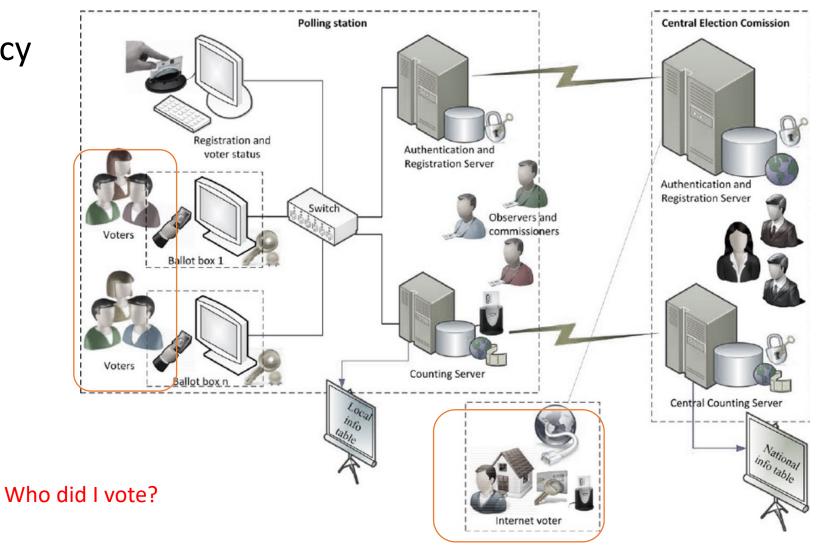

Whose value is greater?




- Privacy and security are generally intertwined
- Security problem usually results in the leakage of data
  - Login in your Facebook, WeChat, WhatsApp account ---> (person info)
  - hack in your iphone ---> (private communication)
  - etc....
- Weakness of privacy may lead to efficient attacks
  - Face/fingerprint recognition ---> login iphone
  - Birthday, family number, ID ---> password of bank account

### An Example: Electronic Voting (e-voting)




## An Example: Electronic Voting (e-voting)





## An Example: Electronic Voting (e-voting)





### What this course is **NOT** about

- NOT a comprehensive course on security and privacy
  - security and privacy are broad topics.
  - Impossible to cover everything in a course
  - Encouraged to present a new topic
- NOT about all the latest attacks
  - We do not catch the latest attacks in this lecture
  - Encouraged to present new and great attacks
- NOT about ethical, legal, or economic issues

### What this course is about

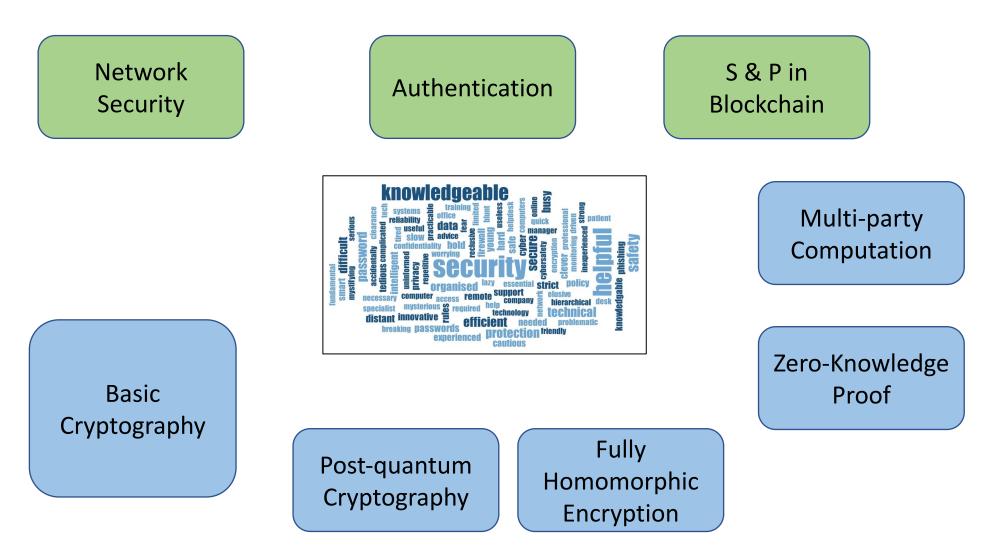
- Introduction to security and privacy
  - Basic tools and recent development to achieve security and privacy
- focus on "big-picture" principles and ideas
  - Basic cryptography
  - and network security
  - Advanced privacy-enhancing technologies
- Security and privacy problems in Blockchain
  - The hot topics in Blockchain

### Course Plan

### • Lectures

- Lectures do not follow any textbooks
- Include recent development
- A Guest Lecture (planned)
  - On the topic of security and privacy in the Blockchain
- Your final presentation
  - Every student gives a 10-minute presentation on any paper about S & P

### Grading


- Assignments (20%)
  - I will post two assignments throughout the course
- Projects: (45%)
  - lecture notes and final presentation
- Final exam (35%)
  - ;) I will post a summary of what you should know about this on the website

### • Final presentation

- Give a 10-minute presentation for any paper from IEEE S&P 19-23, ACM CCS 19-23, USENIX 19-23, NDSS 19-23, CRYPTO 19-23, or EUROCRYPT 19-23
- Send your choice to the TA on or before Mar 27
- The presentation schedule will be given on April 1

### • Lecture notes

- I will give an example for week 2. I will also provide readings as a reference.
- Lecture notes for week x should be submitted to TA and me on or before Tuesday of week x+4, x ∈ {3,4,5,6,7,8,9}
- Every 3 students, as a team, should choose and write one lecture note. (45/7)
- Revisions may be required.



## Course syllabus

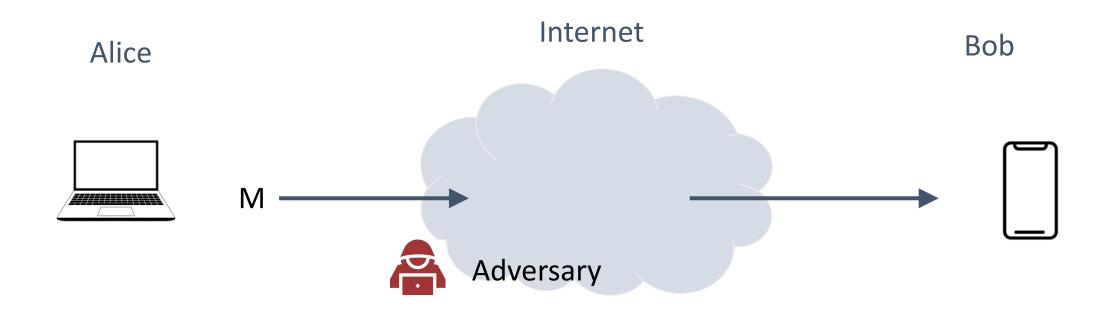
| Date      | Topics                                                                                          | Lecture notes               |
|-----------|-------------------------------------------------------------------------------------------------|-----------------------------|
| Week 1    | Course Overview                                                                                 | N/A                         |
| Week 2    | Basic Cryptography 1: Symmetric-key cryptography                                                | Haiyang Xue                 |
| Week 3    | Basic Cryptography 2: Public-key cryptography                                                   | Group 1 & Group 2           |
| Week 4    | Network Security Principles                                                                     | Group 3 & Group 4           |
| Week 5    | Network Security in Practice                                                                    | Group 5 & Group 6           |
| Week 6    | Authentication                                                                                  | Group 7 & Group 8 & Group 9 |
| Week 7    | Privacy-Enhancing technologies 1 post-quantum cryptography and fully-<br>homomorphic encryption | Group 10 & Group 11         |
| Week 8    | Privacy-Enhancing technologies 2 zero knowledge proof                                           | Group 12 & Group 13         |
| Week 9    | Privacy-Enhancing technologies 3 multiparty computation                                         | Group 14 & Group 15         |
| Week 10   | Guest lecture on blockchain                                                                     | N/A                         |
| Week 11   | Easter                                                                                          | N/A                         |
| Week 12   | Final presentation 1                                                                            | N/A                         |
| Week 13   | Final presentation 2                                                                            | N/A                         |
| 13/1/2024 |                                                                                                 | 23/129                      |

### Before giving a brief intro to each topic,

### I would like to give several helpful resources

### Other Resources for learning security and privacy

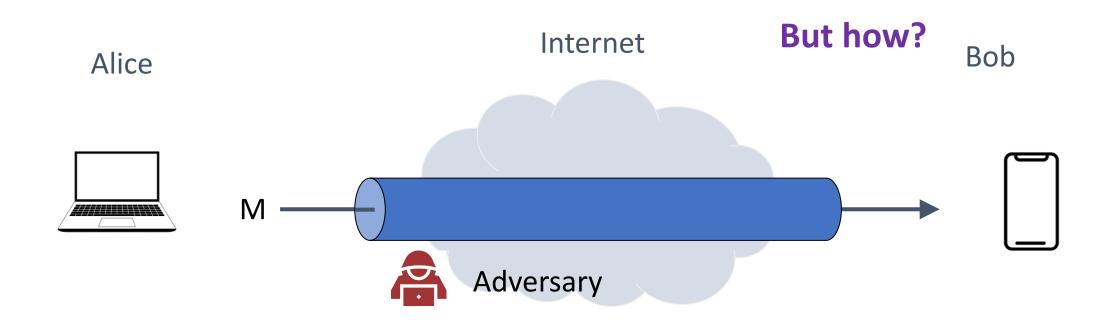
- Top-tier conferences
  - IEEE Security & Privacy, ACM CCS, USENIX, NDSS
  - CRYPTO, EUROCRYPT, ASIACRYPT
- eprint
  - <a href="https://eprint.iacr.org/">https://eprint.iacr.org/</a>
- GitHub
  - <a href="https://github.com/sbilly/awesome-security">https://github.com/sbilly/awesome-security</a>
  - <a href="https://github.com/qazbnm456/awesome-web-security">https://github.com/qazbnm456/awesome-web-security</a>
  - <u>https://github.com/matter-labs/awesome-zero-knowledge-proofs</u>


### In the rest of this lecture I will give a brief intro to each topic one by one

Please find which topic(s) you are interested in

## Basic Cryptography 1: Symmetric-key cryptography

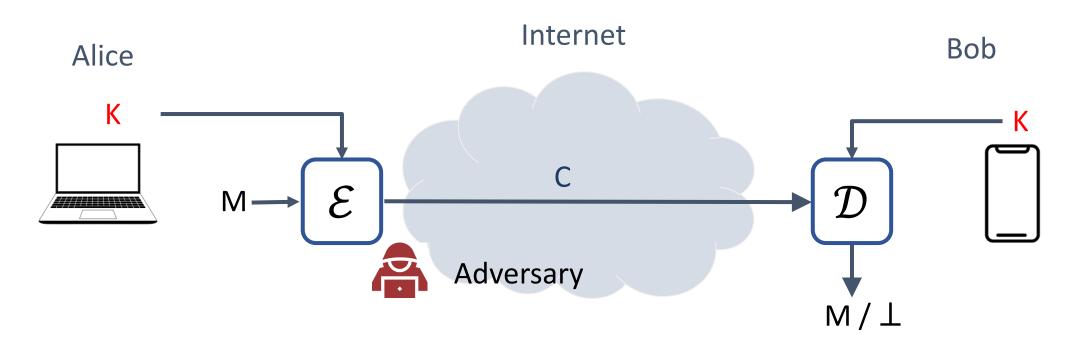
| Date    | Topics                                           | Outline (tentative)                                                                                                           | Lecture notes |
|---------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Week 1  | Course Overview                                  | course plan, reading materials, grading, brief introduction to every topic                                                    | N/A           |
| Week 2  | Basic Cryptography 1: Symmetric-key cryptography | symmetric encryption, one-time pad, blockcipher, hash function, MAC, authenticated encryption.                                | Haiyang Xue   |
| Week 3  | Basic Cryptography 2: Public-key cryptography    | RSA, Diffie-Hellman, public key encryption, Digital signature                                                                 | ??            |
| Week 4  | Network Security Principles                      | authenticated key exchange, PKI, and certification authorities                                                                | ??            |
| Week 5  | Network Security in Practice                     | secure sockets layer (SSL), internet protocol security (IPSec),<br>internet key exchange (IKE), virtual private network (VPN) | ??            |
| Week 6  | Authentication                                   | access control, password authentication, biometric authentication                                                             | ??            |
| Week 7  | Privacy-Enhancing technologies 1                 | post-quantum cryptography; Fully-homomorphic encryption and applications                                                      | ??            |
| Week 8  | Privacy-Enhancing technologies 2                 | commitment, zero-knowledge proofs;                                                                                            | ??            |
| Week 9  | Privacy-Enhancing technologies 3                 | secure multiparty computation                                                                                                 | ??            |
| Week 10 | Guest lecture                                    | security and privacy in Blockchain                                                                                            | N/A           |
| Week 11 |                                                  |                                                                                                                               | N/A           |
| Week 12 | Final presentation 1                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or EUROCRYPT                                                                      | N/A           |
| Week 13 | Final presentation 2                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or<br>EUROCRYPT                                                                   | N/A           |


## Lecture 2: Symmetric-key cryptography



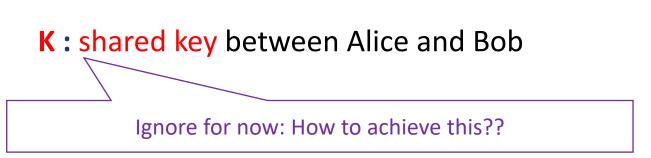
#### Security goals:

- Confidential: adversary should not be able to read message M
- Integrity: adversary should not be able to modify message M
- Authenticated: message M really originated from Alice


### Build secure channels



#### Security goals:

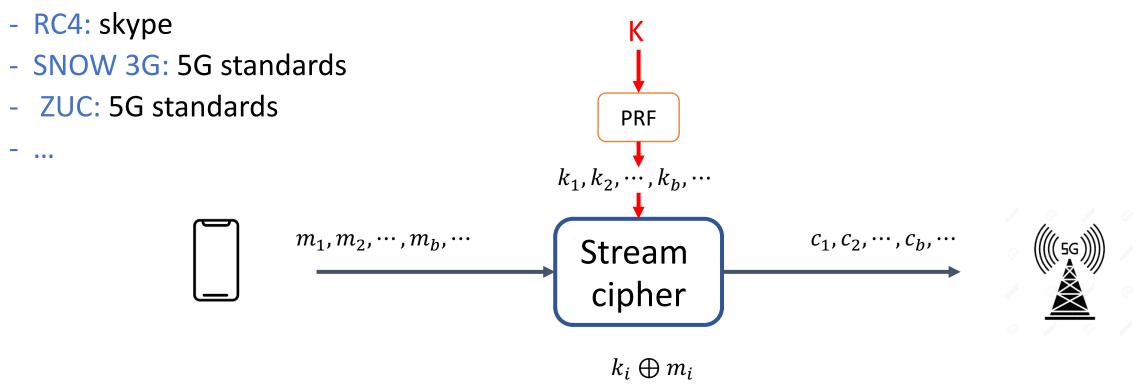

- Confidential: adversary should not be able to read message M
- Integrity: adversary should not be able to modify message M
- Authenticated: message M really originated from Alice

## Lecture 2: Symmetric-key cryptography



*E* : encryption algorithm (public)

 $\mathcal{D}$ : decryption algorithm (public)

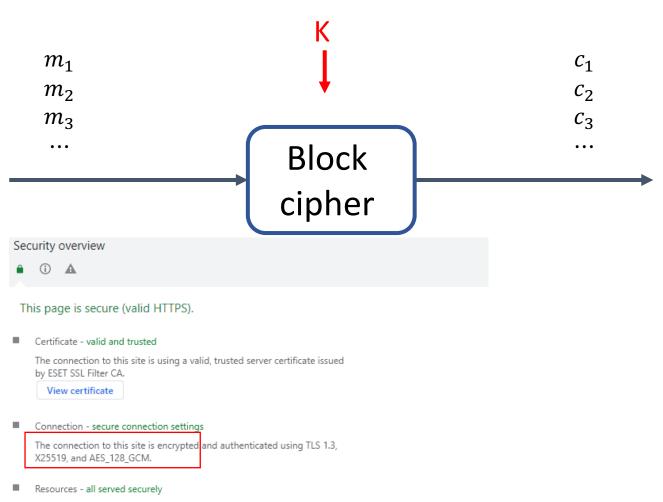



## Symmetric-key cryptography Stack

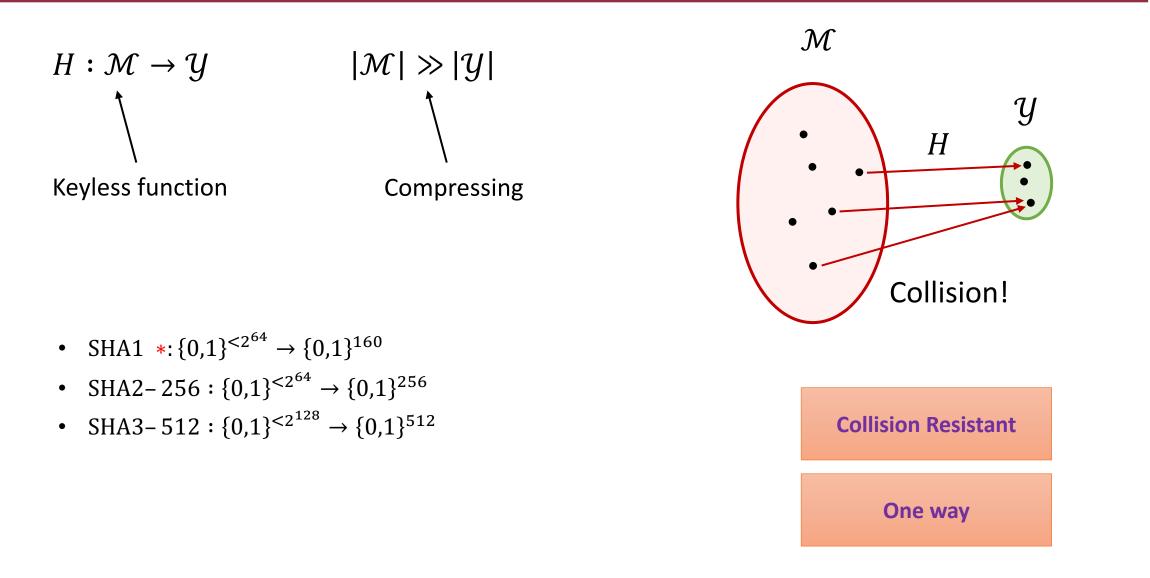
- Stream cipher
  - one-time pad
  - RC5; SNOW; ZUC
- Block cipher
  - 3DES, AES
- Hash function
- Message Authenticated Code (MAC)

### Stream cipher

- Stream cipher
  - one-time pad




#### https://en.wikipedia.org/wiki/SNOW


### Block cipher

- Block cipher
  - 3DES, AES-XXX

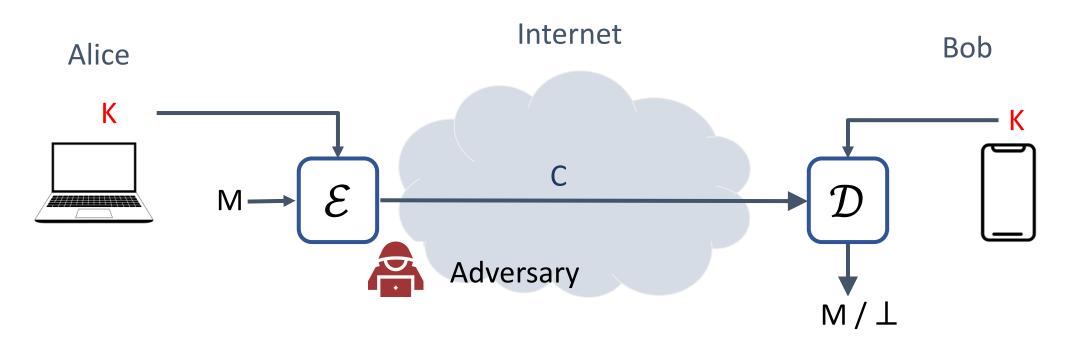
• Visit any https website



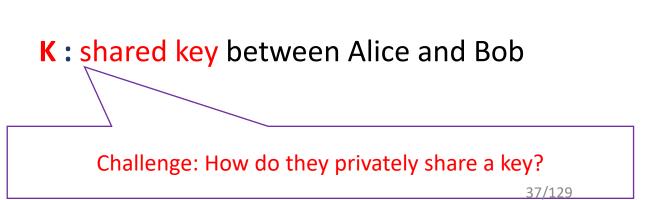
### Hash functions



- Store password in computer
- Blockchain Mining
  - SHA-256
  - <2^{224}


| Block hash:<br>c5aa3150f61b752c8fb39525f911981e2f9982c8b9bc907c73914585ad2ef12b |
|---------------------------------------------------------------------------------|
| Target:<br>0x0000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFF                               |
| Is the block hash less than the target?<br>False                                |

• CA/APP fingerprint etc. example in CA

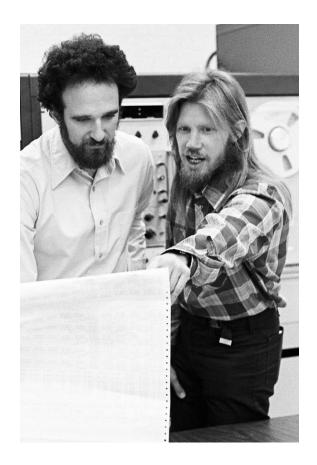

## Symmetric-key cryptography Stack

- Stream cipher
  - one-time pad
  - RC5; SNOW; ZUC
- Block cipher
  - 3DES, AES
- Hash function
- Message Authenticated Code (MAC)

# Challenge: Symmetric-key cryptography



- $\mathcal{E}$ : encryption algorithm (public)
- $\mathcal{D}$ : decryption algorithm (public)




# Basic Cryptography 2: Public-key cryptography

| Date    | Topics                                           | Outline (tentative)                                                                                                           | Lecture notes |
|---------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Week 1  | Course Overview                                  | course plan, reading materials, grading, brief introduction to every topic                                                    | N/A           |
| Week 2  | Basic Cryptography 1: Symmetric-key cryptography | symmetric encryption, one-time pad, blockcipher, hash function, MAC, authenticated encryption.                                | Haiyang Xue   |
| Week 3  | Basic Cryptography 2: Public-key cryptography    | RSA, Diffie-Hellman, public key encryption, Digital signature                                                                 | ??            |
| Week 4  | Network Security Principles                      | authenticated key exchange, PKI, and certification authorities                                                                | ??            |
| Week 5  | Network Security in Practice                     | secure sockets layer (SSL), internet protocol security (IPSec),<br>internet key exchange (IKE), virtual private network (VPN) | ??            |
| Week 6  | Authentication                                   | access control, password authentication, biometric authentication                                                             | ??            |
| Week 7  | Privacy-Enhancing technologies 1                 | post-quantum cryptography; Fully-homomorphic encryption and applications                                                      | ??            |
| Week 8  | Privacy-Enhancing technologies 2                 | commitment, zero-knowledge proofs;                                                                                            | ??            |
| Week 9  | Privacy-Enhancing technologies 3                 | secure multiparty computation                                                                                                 | ??            |
| Week 10 | Guest lecture                                    | security and privacy in Blockchain                                                                                            | N/A           |
| Week 11 |                                                  |                                                                                                                               | N/A           |
| Week 12 | Final presentation 1                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or<br>EUROCRYPT                                                                   | N/A           |
| Week 13 | Final presentation 2                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or<br>EUROCRYPT                                                                   | N/A           |

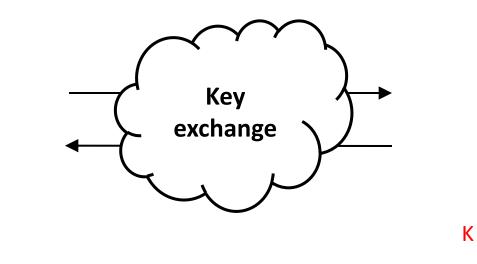
# Lecture 3: Public-key cryptography

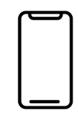
Diffie-Hellman 1976 <u>New Directions in Cryptography</u>



1EEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-22, NO. 6, NOVEMBER 1976

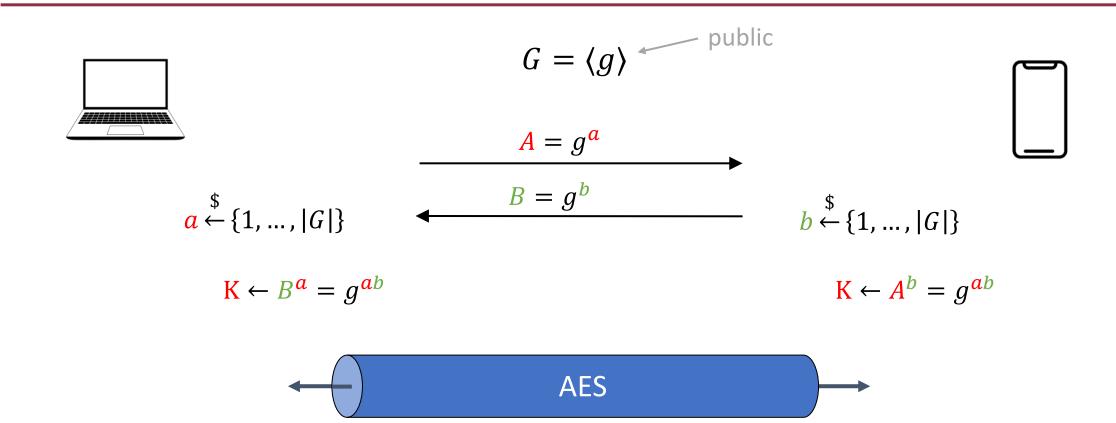
#### New Directions in Cryptography


Invited Paper

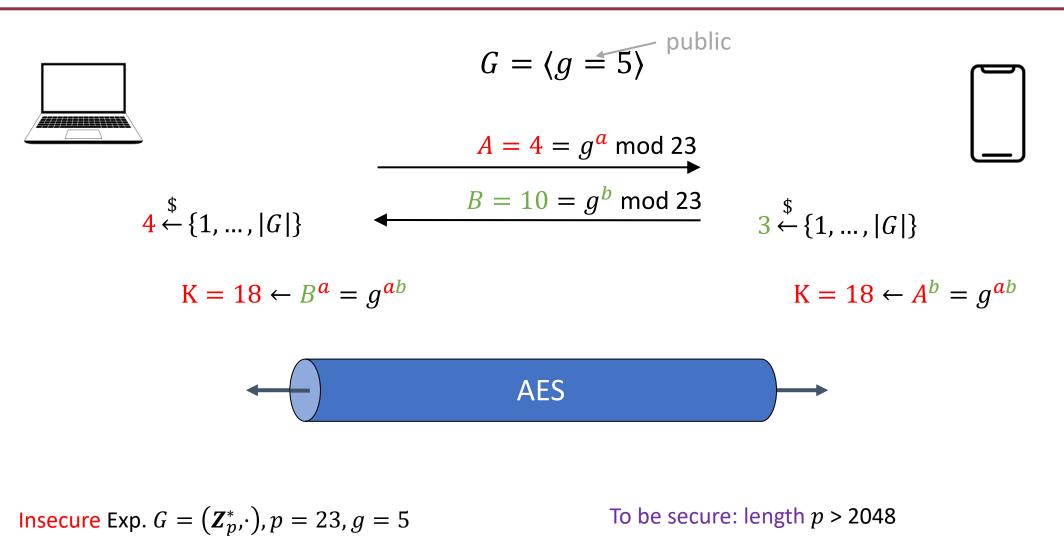

WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

# Lecture 3: Public-key cryptography

Κ

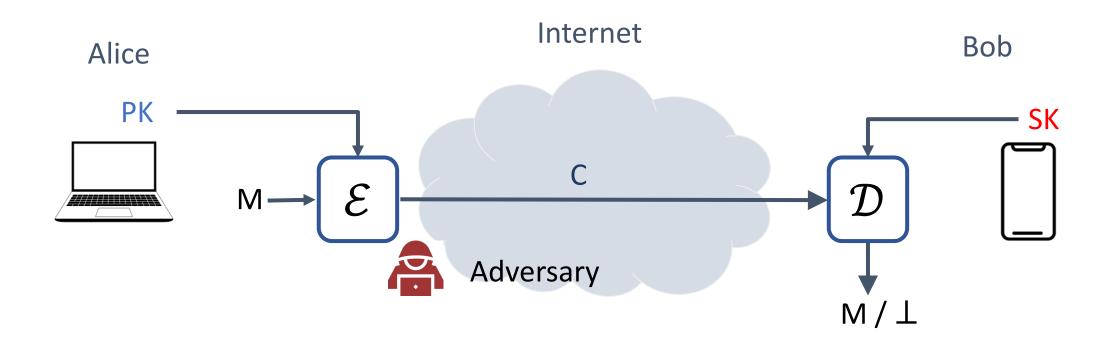

• DH key exchange








## Diffie-Hellman Key Exchange




## Diffie-Hellman Key Exchange



https://www.rfc-editor.org/rfc/rfc2409#section-6.2; rfc3526#page-3

# Is public-key cryptography possible???



 $\mathcal{E}$  : encryption algorithm (public)

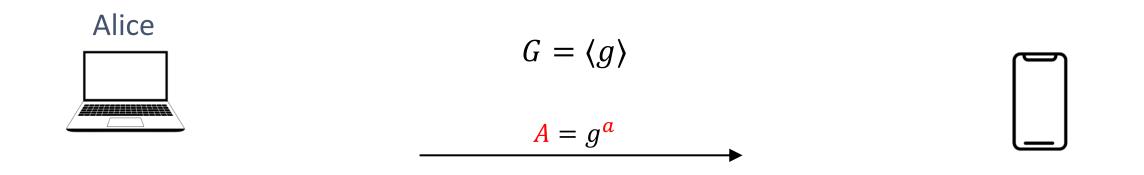
 $\mathcal{D}$  : decryption algorithm (public)

PK : public key of Bob (public)

SK : secret key (secret)

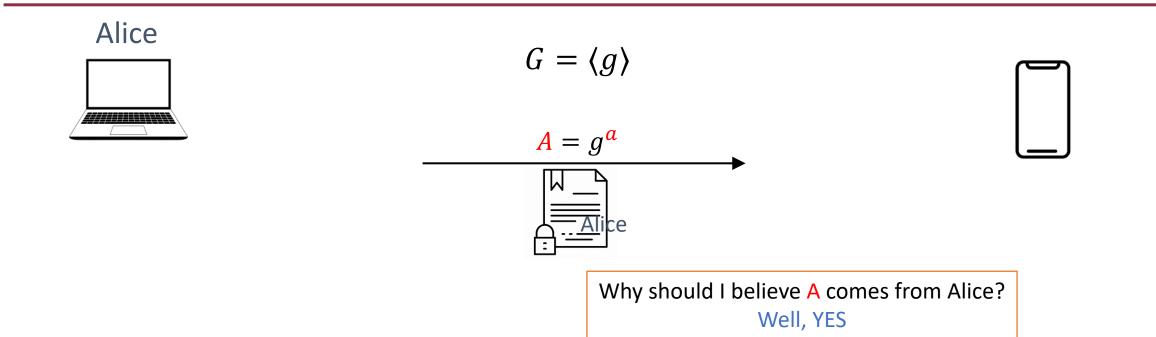
• The RSA encryption scheme

$$c = E(m) = m^e \pmod{N}$$
$$m = D(c) = c^d \pmod{N}$$


PK: 
$$N = pq, e$$
  
SK:  $d = e^{-1}mod \phi(N)$ 



Adi Shamir Ron Rivest


Leonard Adleman

# **Digital Signature**



Why should I believe A comes from Alice? Most likely NO

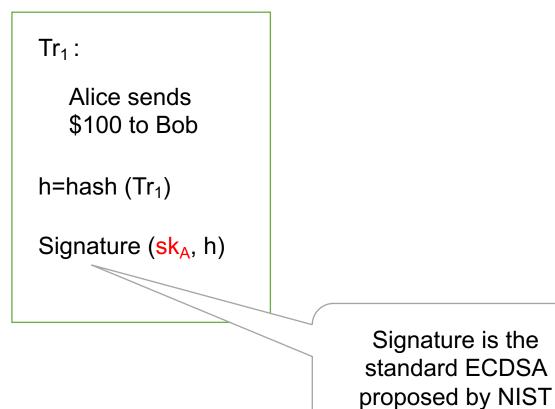
# **Digital Signature**



#### • ECDSA

- Digital Signature Standard using Elliptic Curve Cryptography
- Widely deployed in cryptocurrency, such as Bitcoin etc.
- Standardized by NIST

#### • RSA Enc with hash

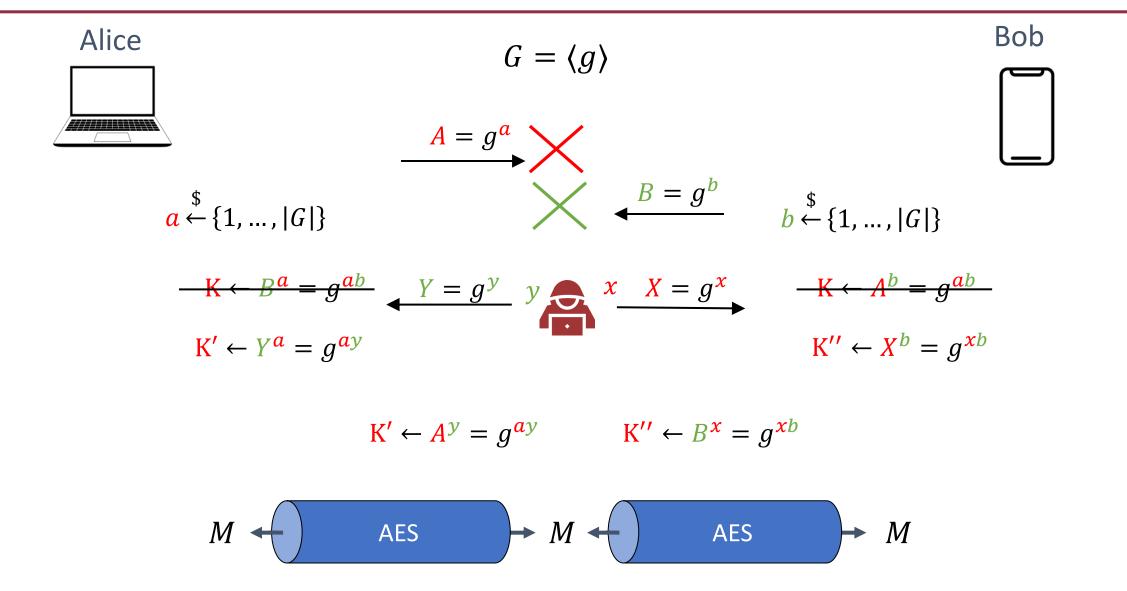

- Roughly, the decryption is the signature
- Roughly, the encryption is the verification

#### • Schnorr, etc

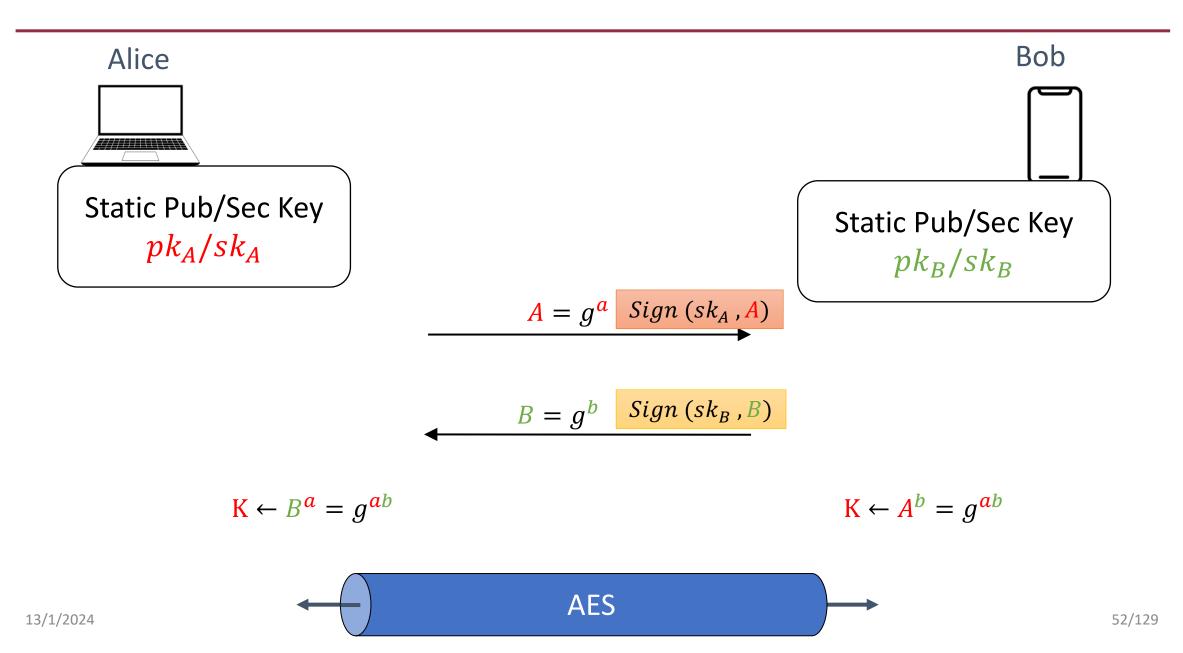
# **Digital Signature**

- HTTPS / TLS certificates (any https)
- Software installation
- Bitcoin

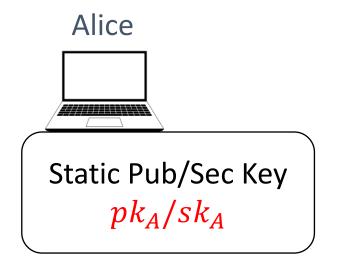





# Lecture 3: Public-key cryptography


- Diffie-Hellman key exchange
- PKE:
  - RSA
- Signature:
  - RSA, ECDSA, Shnorr
- Applications:
  - https, etc

| Date    | Topics                                           | Outline (tentative)                                                                                                           | Lecture notes |
|---------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Week 1  | Course Overview                                  | course plan, reading materials, grading, brief introduction to every topic                                                    | N/A           |
| Week 2  | Basic Cryptography 1: Symmetric-key cryptography | symmetric encryption, one-time pad, blockcipher, hash function, MAC, authenticated encryption.                                | Haiyang Xue   |
| Week 3  | Basic Cryptography 2: Public-key cryptography    | RSA, Diffie-Hellman, public key encryption, Digital signature                                                                 | ??            |
| Week 4  | Network Security Principles                      | authenticated key exchange, PKI, and certification authorities                                                                | ??            |
| Week 5  | Network Security in Practice                     | secure sockets layer (SSL), internet protocol security (IPSec),<br>internet key exchange (IKE), virtual private network (VPN) | ??            |
| Week 6  | Authentication                                   | access control, password authentication, biometric authentication                                                             | ??            |
| Week 7  | Privacy-Enhancing technologies 1                 | post-quantum cryptography; Fully-homomorphic encryption and applications                                                      | ??            |
| Week 8  | Privacy-Enhancing technologies 2                 | commitment, zero-knowledge proofs;                                                                                            | ??            |
| Week 9  | Privacy-Enhancing technologies 3                 | secure multiparty computation                                                                                                 | ??            |
| Week 10 | Guest lecture                                    | security and privacy in Blockchain                                                                                            | N/A           |
| Week 11 |                                                  |                                                                                                                               | N/A           |
| Week 12 | Final presentation 1                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or EUROCRYPT                                                                      | N/A           |
| Week 13 | Final presentation 2                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or<br>EUROCRYPT                                                                   | N/A           |
|         |                                                  |                                                                                                                               |               |

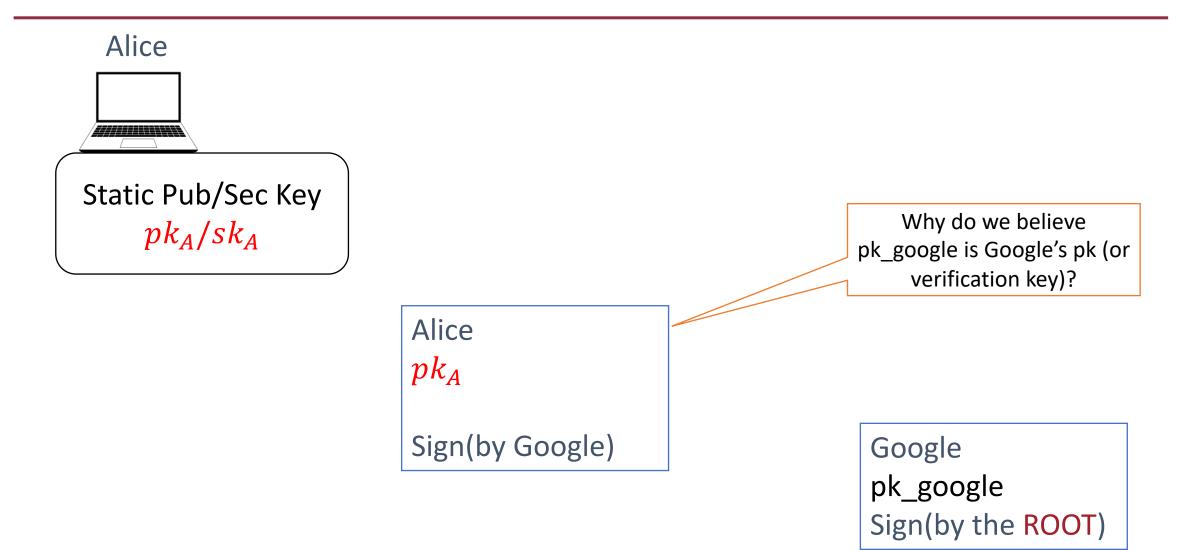

## Diffie-Hellman: man-in-the-middle attack



## Ideal: Authenticated Key Exchange



# Ideal: Authenticated Key Exchange




There are many Alice's

Why should we believe  $pk_A$  belongs to Alice?

Need to **bind** public keys to entities

# Public-key infrastructure (PKI)



A few Roots need to be trust

# Certificate authority (CA)

- A way of binding a public key to an entity
- CA consists of:
  - The public key of the entity
  - A bunch of information identifying the entity
    - Name
    - Address
    - Occupation
    - URL
    - ...

# Certificate authority (CA)

Certificate

| www.google.       | com ESET SSL Filter CA                                                          |
|-------------------|---------------------------------------------------------------------------------|
| Subject Name      |                                                                                 |
| Common Name       | www.google.com                                                                  |
| Issuer Name       |                                                                                 |
| Common Name       | ESET SSL Filter CA                                                              |
|                   | ESET, spol. s r. o.                                                             |
| Country           |                                                                                 |
|                   |                                                                                 |
| Validity          |                                                                                 |
| Not Before        | Mon, 28 Nov 2022 08:19:01 GMT                                                   |
| Not After         | Mon, 20 Feb 2023 08:19:00 GMT                                                   |
| Culture Alt Name  |                                                                                 |
| Subject Alt Names |                                                                                 |
| DNS Name          | www.google.com                                                                  |
| Public Key Info   |                                                                                 |
| Public Key Into   |                                                                                 |
| Algorithm         | Elliptic Curve                                                                  |
| Key Size          | 256                                                                             |
| Curve             | P-256                                                                           |
| Public Value      | 04:7E:F5:D4:A3:E7:83:25:34:E6:A8:96:FE:A8:14:F0:7A:4C:69:5B:D7:FB:48:5D:4D:01:4 |
|                   |                                                                                 |

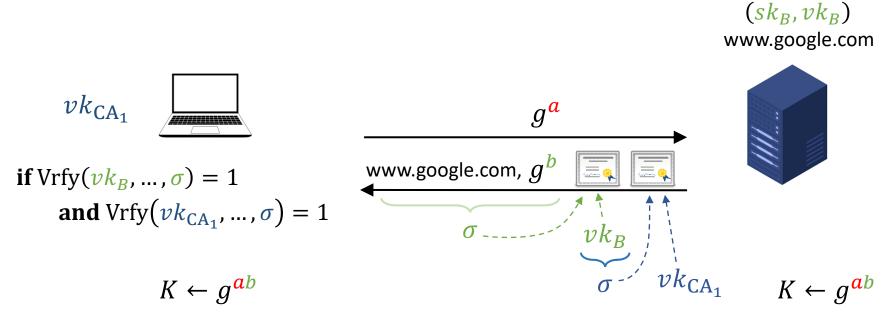
Miscellaneous

• Wiki, ECDSA Signature with SHA-384

• Polyu, PKCS #1 RSA Encryption

• Google,

# Lecture 4: Network Security Principles


- Authenticated Key Exchange
- Public Key Infrastructure
- Certificate authority

# Network Security in Practice

| Date    | Topics                                           | Outline (tentative)                                                                                                           | Lecture notes |
|---------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Week 1  | Course Overview                                  | course plan, reading materials, grading, brief introduction to every topic                                                    | N/A           |
| Week 2  | Basic Cryptography 1: Symmetric-key cryptography | symmetric encryption, one-time pad, blockcipher, hash function, MAC, authenticated encryption.                                | Haiyang Xue   |
| Week 3  | Basic Cryptography 2: Public-key cryptography    | RSA, Diffie-Hellman, public key encryption, Digital signature                                                                 | ??            |
| Week 4  | Network Security Principles                      | authenticated key exchange, PKI, and certification authorities                                                                | ??            |
| Week 5  | Network Security in Practice                     | secure sockets layer (SSL), internet protocol security (IPSec),<br>internet key exchange (IKE), virtual private network (VPN) | ??            |
| Week 6  | Authentication                                   | access control, password authentication, biometric authentication                                                             | ??            |
| Week 7  | Privacy-Enhancing technologies 1                 | post-quantum cryptography; Fully-homomorphic encryption and applications                                                      | ??            |
| Week 8  | Privacy-Enhancing technologies 2                 | commitment, zero-knowledge proofs;                                                                                            | ??            |
| Week 9  | Privacy-Enhancing technologies 3                 | secure multiparty computation                                                                                                 | ??            |
| Week 10 | Guest lecture                                    | security and privacy in Blockchain                                                                                            | N/A           |
| Week 11 |                                                  |                                                                                                                               | N/A           |
| Week 12 | Final presentation 1                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or EUROCRYPT                                                                      | N/A           |
| Week 13 | Final presentation 2                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or<br>EUROCRYPT                                                                   | N/A           |

# Lecture 5: Network Security in Practice

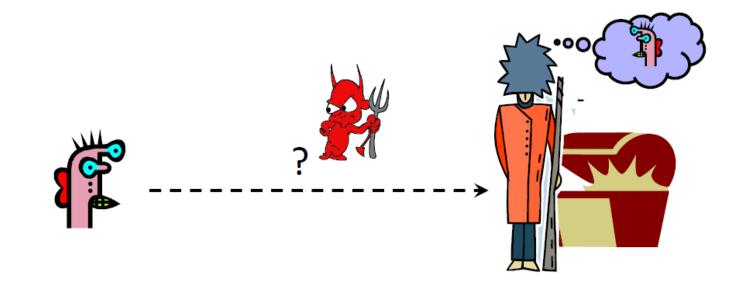
• HTTPS / TLS + PKI



else

abort








# Web/Software Security

| Date    | Topics                                           | Outline (tentative)                                                                                                           | Lecture notes |
|---------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Week 1  | Course Overview                                  | course plan, reading materials, grading, brief introduction to every topic                                                    | N/A           |
| Week 2  | Basic Cryptography 1: Symmetric-key cryptography | symmetric encryption, one-time pad, blockcipher, hash function, MAC, authenticated encryption.                                | Haiyang Xue   |
| Week 3  | Basic Cryptography 2: Public-key cryptography    | RSA, Diffie-Hellman, public key encryption, Digital signature                                                                 | ??            |
| Week 4  | Network Security Principles                      | authenticated key exchange, PKI, and certification authorities                                                                | ??            |
| Week 5  | Network Security in Practice                     | secure sockets layer (SSL), internet protocol security (IPSec),<br>internet key exchange (IKE), virtual private network (VPN) | ??            |
| Week 6  | Authentication                                   | access control, password authentication, biometric authentication                                                             | ??            |
| Week 7  | Privacy-Enhancing technologies 1                 | post-quantum cryptography; Fully-homomorphic encryption and applications                                                      | ??            |
| Week 8  | Privacy-Enhancing technologies 2                 | commitment, zero-knowledge proofs;                                                                                            | ??            |
| Week 9  | Privacy-Enhancing technologies 3                 | secure multiparty computation                                                                                                 | ??            |
| Week 10 | Guest lecture                                    | security and privacy in Blockchain                                                                                            | N/A           |
| Week 11 |                                                  |                                                                                                                               | N/A           |
| Week 12 | Final presentation 1                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or EUROCRYPT                                                                      | N/A           |
| Week 13 | Final presentation 2                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or<br>EUROCRYPT                                                                   | N/A           |

• Basic problem



How do you prove to someone you are who you claimed?

This needs to be solved for any access control system

## Prove who you are

- What you know
  - Passwords
  - Answers to questions
- Where you are
  - IP address
- What you are
  - Biometrics
- What you have
  - Secure tokens, mobile devices

### Password

- Authentication (& Identification)
  - Establishes that the user is who they say they are.
- Authorization
  - The process used to decide if the authenticated person is allowed to access specific information or functions.
- Access Control
  - Restriction of access (includes authentication & authorization)

# How Can Passwords Be Stored?

- Filing System
- **ð** Clear text
  - Encrypted
- Password + Encryption ?
  - Hashed
- Password + Hash function ?
  - Salted Hash
- (Username + Salt + Password) + Hash ?



# What About Biometrics?

- Authentication: What you are
- Unique identifying characteristics to authenticate user or create
  - Biological and physiological: Fingerprints, face scan
- Advantages:
  - Do not need to remember
  - Can't share (generally)

# **Attacking Biometrics**

- An adversary might try to steal biometric info
  - Malicious fingerprint reader
    - Consider when biometric is used to derive a cryptographic key
  - Copy fingerprint on a glass
- Continuous news about trying to compromise biometrics

#### iPhone 6 vulnerable to TouchID fingerprint hack



But researcher not worried about attacks.

Apple's just-released iPhone 6 is vulnerable to the same TouchID fingerprint sensor attack as its iPhone 5s predecessor, a researcher who detailed the first security hole has found.

Principal researcher from security firm Lookout, Marc Rogers, followed the Chaos Computer Club biometrics hacking team late last year to demonstrate how the TouchID sensor in the iPhone 5s could be fooled by a fake set of fingerprints created by using household items.

Rogers this week decided to check whether Apple had



68/129

#### 13/1/2024

# Authentication

| Date    | Topics                                           | Outline (tentative)                                                                                                           | Lecture notes |
|---------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Week 1  | Course Overview                                  | course plan, reading materials, grading, brief introduction to every topic                                                    | N/A           |
| Week 2  | Basic Cryptography 1: Symmetric-key cryptography | symmetric encryption, one-time pad, blockcipher, hash function, MAC, authenticated encryption.                                | Haiyang Xue   |
| Week 3  | Basic Cryptography 2: Public-key cryptography    | RSA, Diffie-Hellman, public key encryption, Digital signature                                                                 | ??            |
| Week 4  | Network Security Principles                      | authenticated key exchange, PKI, and certification authorities                                                                | ??            |
| Week 5  | Network Security in Practice                     | secure sockets layer (SSL), internet protocol security (IPSec),<br>internet key exchange (IKE), virtual private network (VPN) | ??            |
| Week 6  | Authentication                                   | access control, password authentication, biometric authentication                                                             | ??            |
| Week 7  | Privacy-Enhancing technologies 1                 | post-quantum cryptography; Fully-homomorphic encryption and applications                                                      | ??            |
| Week 8  | Privacy-Enhancing technologies 2                 | commitment, zero-knowledge proofs;                                                                                            | ??            |
| Week 9  | Privacy-Enhancing technologies 3                 | secure multiparty computation                                                                                                 | ??            |
| Week 10 | Guest lecture                                    | security and privacy in Blockchain                                                                                            | N/A           |
| Week 11 |                                                  |                                                                                                                               | N/A           |
| Week 12 | Final presentation 1                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or EUROCRYPT                                                                      | N/A           |
| Week 13 | Final presentation 2                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or<br>EUROCRYPT                                                                   | N/A           |

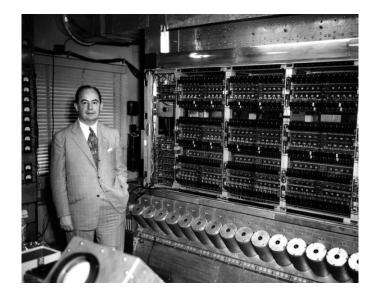
### 1994

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer<sup>\*</sup>

Peter W. Shor<sup>†</sup>

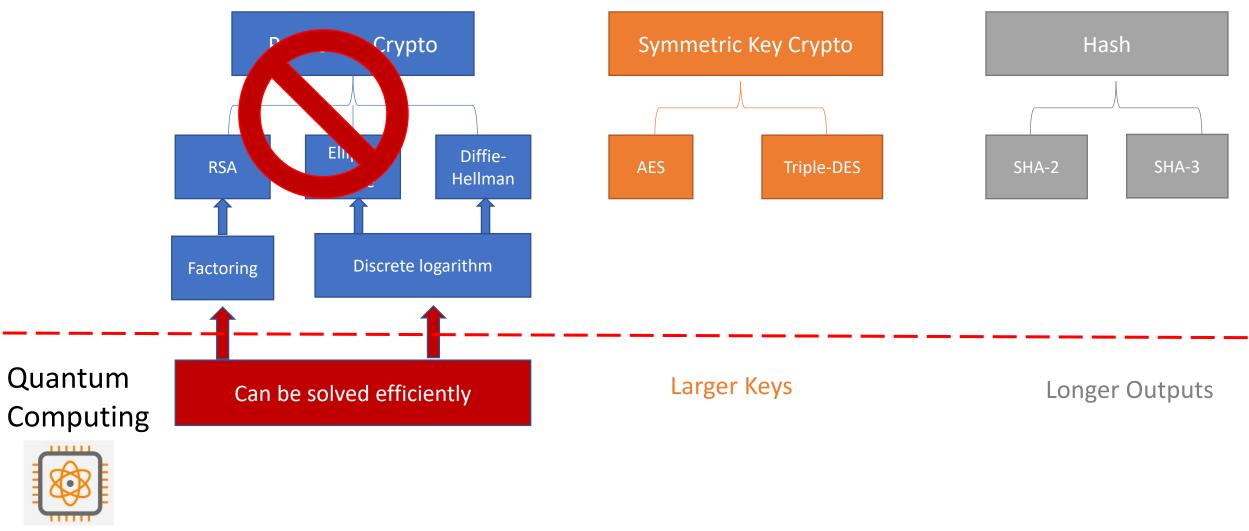
#### Abstract

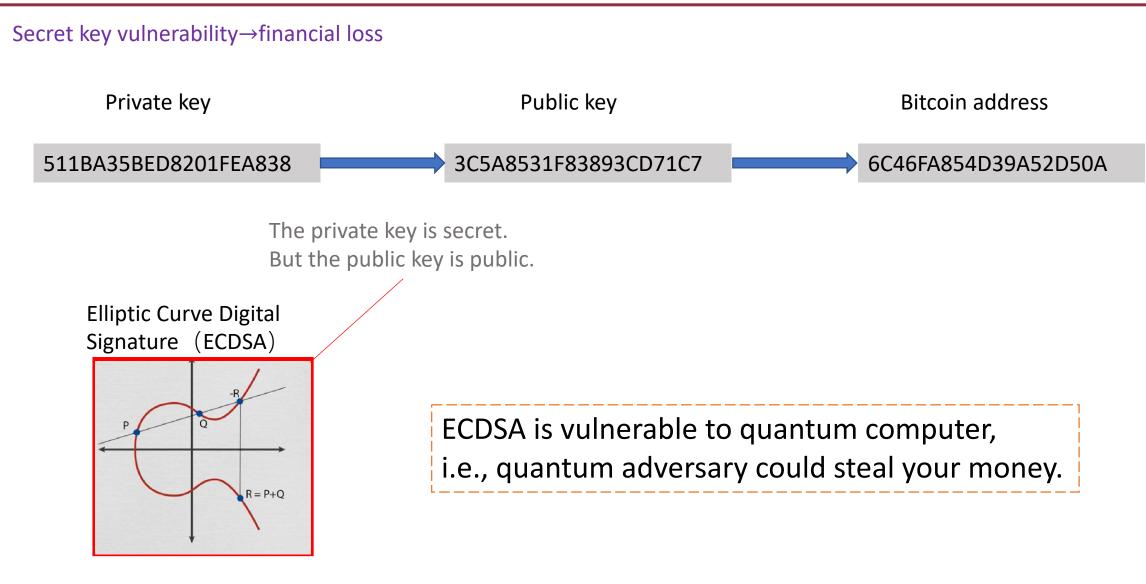
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.


**Keywords:** algorithmic number theory, prime factorization, discrete logarithms, Church's thesis, quantum computers, foundations of quantum mechanics, spin systems, Fourier transforms



#### While it is not sure when large-scale quantum computer could be built


#### experts estimate it is possible in two decades\*


\*Quantum Threat Timeline Report: Global Risk Institute



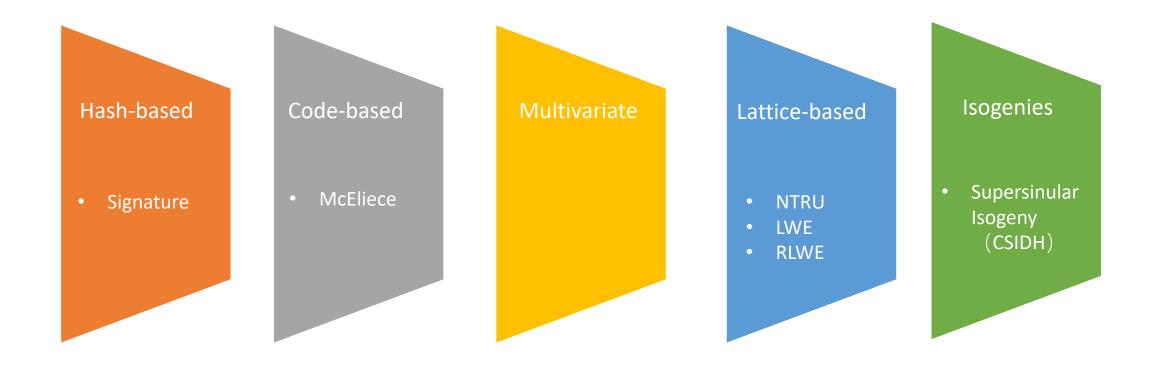



# Contemporary cryptography





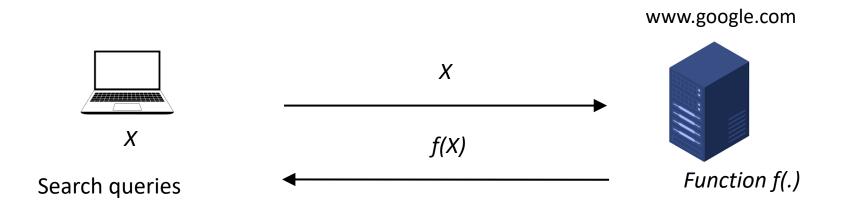
## National Institute of Standards and Technology (NIST)





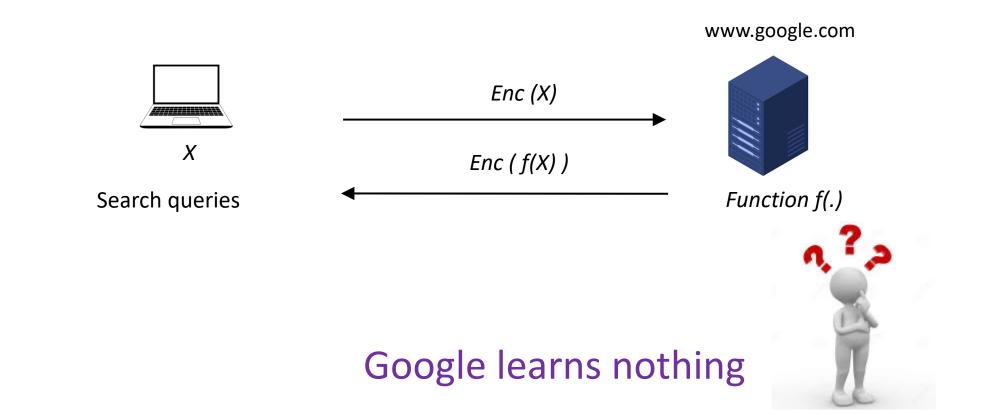

2021

Round 4


## Hard problems believed to be quantum-resistant



## Fully-homomorphic encryption (FHE)




## What can we do with encrypted data, anyway?

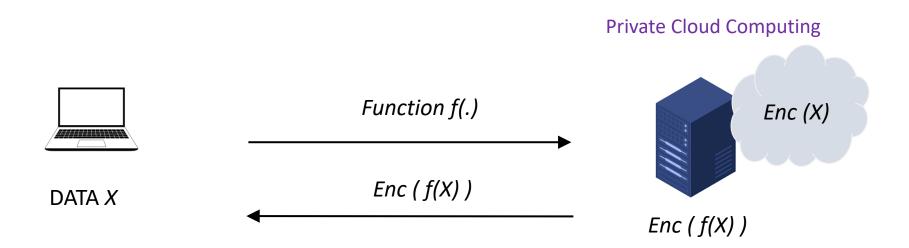


#### WANT PRIVACY!

## What can we do with encrypted data, anyway?



Some people noted the algebraic structure in RSA...


• RSA encryption *E* 

$$E(m_1) = m_1^e \quad E(m_2) = m_2^e$$
$$E(m_1) \times E(m_2)$$
$$= m_1^e \times m_2^e$$
$$= (m_1 \times m_2)^e$$
$$= E(m_1 \times m_2)$$

f=Multiplication

$$E(m_1) \times E(m_2) = E(m_1 \times m_2)$$

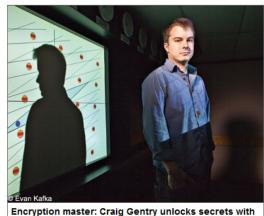
f= arbitrary



What if f is any poly-time function?

... until, in October 2008 ...

... *Gentry* came up with the first fully homomorphic encryption scheme ...


... from Lattice...



Breakthroughs

IBM's Blindfolded Calculator Andy Greenberg, 06.24.09, 06:00 PM EDT Forbes Magazine dated July 13, 2009

A researcher's algorithm could teach computers a new privacy trick.



Fully-homomorphic encryption

# How does it work?

## What is the magic?

## Privacy-Enhancing technologies 1: PQC and FHE

| Date    | Topics                                           | Outline (tentative)                                                                                                           | Lecture notes |
|---------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Week 1  | Course Overview                                  | course plan, reading materials, grading, brief introduction to every topic                                                    | N/A           |
| Week 2  | Basic Cryptography 1: Symmetric-key cryptography | symmetric encryption, one-time pad, blockcipher, hash function, MAC, authenticated encryption.                                | Haiyang Xue   |
| Week 3  | Basic Cryptography 2: Public-key cryptography    | RSA, Diffie-Hellman, public key encryption, Digital signature                                                                 | ??            |
| Week 4  | Network Security Principles                      | authenticated key exchange, PKI, and certification authorities                                                                | ??            |
| Week 5  | Network Security in Practice                     | secure sockets layer (SSL), internet protocol security (IPSec),<br>internet key exchange (IKE), virtual private network (VPN) | ??            |
| Week 6  | Authentication                                   | access control, password authentication, biometric authentication                                                             | ??            |
| Week 7  | Privacy-Enhancing technologies 1                 | post-quantum cryptography; Fully-homomorphic encryption and applications                                                      | ??            |
| Week 8  | Privacy-Enhancing technologies 2                 | commitment, zero-knowledge proofs;                                                                                            | ??            |
| Week 9  | Privacy-Enhancing technologies 3                 | secure multiparty computation                                                                                                 | ??            |
| Week 10 | Guest lecture                                    | security and privacy in Blockchain                                                                                            | N/A           |
| Week 11 |                                                  |                                                                                                                               | N/A           |
| Week 12 | Final presentation 1                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or EUROCRYPT                                                                      | N/A           |
| Week 13 | Final presentation 2                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or EUROCRYPT                                                                      | N/A           |

## Lecture 9: Privacy-Enhancing technologies 2: ZKP



Diffie



**Rivest** 



Rivest



Yao



Goldwasser



Shamir

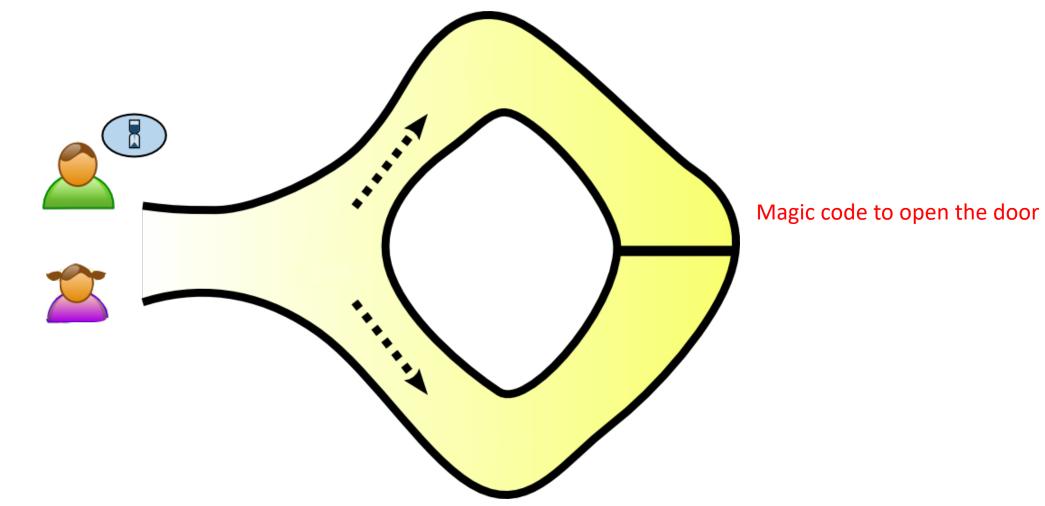
Hellman



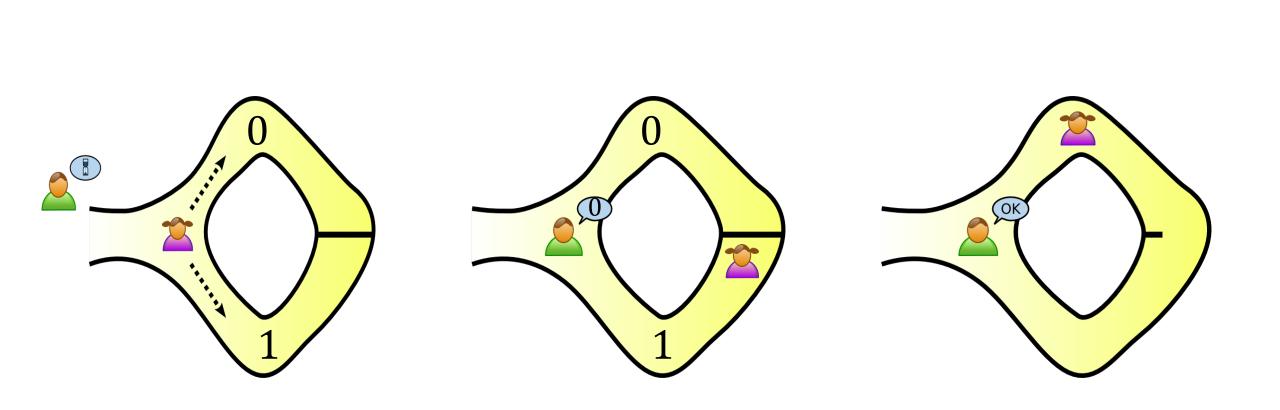
Adelman

Adelman

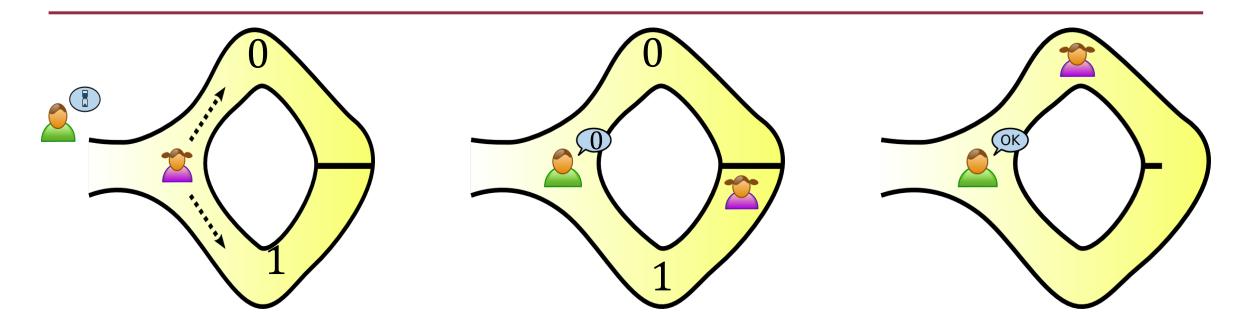



Dertouzos



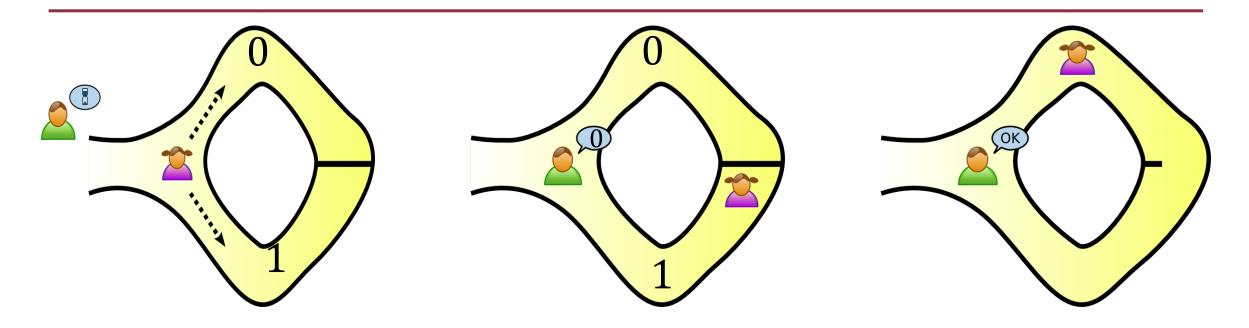

Micali Rackoff

| 1976              | 1977 | 1978            | 1982 | 1985           |
|-------------------|------|-----------------|------|----------------|
| New<br>directions | RSA  | Homomorphic Enc | MPC  | Zero Knowledge |
| 13/1/2024         |      | Turing Award    |      | 84/129         |


## Zero Knowledge Proof



Goldwasser, Micali, Rackoff: The Knowledge Complexity of Interactive Proof-Systems (Extended Abstract)




## Alibaba Cave



does't know the key, the proof was accepted with 1/2.
learns nothing about the magic code

#### Repeat the game n times



- if  $\frac{2}{n}$  does't know the key, the proof was accepted with  $\frac{1}{2^n}$ .
- learns nothing about the magic code

## Zero Knowledge Proof



• You want to show me you know the difference

- But do not want to show what the difference is.
- How?

#### $x \in L$ if there exists a witness w s.t. R(x, w) = 1

$$L \coloneqq \{x | \exists w \text{ s.t. } R(x, w) = 1\}$$

• Prover with input (x, w) wants to prove that  $x \in L$ 



- if  $x \in L$ , verifier accept
- if  $x \notin L$ , for any (PPT) prover, the verifier will reject
- Zero-knowledge: verifier learns nothing about w

## Theorem [GMW86] Commitment ---> ZKP for all of NP

## Theorem [GMW86] One-way function ---> ZKP for all of NP

## zk-SNARK/STARK

- Consider the complexity of the Verifier.
- Could it be less than computing R(x, w)?????
- This is motivated by the applications in Blockchain.

#### YES!!!!

#### PCP Theorem [AS,ALMSS,Dinur]:

NP statements have polynomial-size PCPs in which the verifier reads only O(1) bits.

Can be made ZK with small overhead [KPT97,IW04]

## Lecture 9: Privacy-Enhancing technologies 2: ZKP

- ZKP various applications
  - outsource verifiable computing;
  - Honest behaviors

# How does it work?

## How to build efficient (and succinct) ZKP?

## Privacy-Enhancing technologies 2: ZKP and MPC

| Date    | Topics                                           | Outline (tentative)                                                                                                           | Lecture notes |
|---------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Week 1  | Course Overview                                  | course plan, reading materials, grading, brief introduction to every topic                                                    | N/A           |
| Week 2  | Basic Cryptography 1: Symmetric-key cryptography | symmetric encryption, one-time pad, blockcipher, hash function, MAC, authenticated encryption.                                | Haiyang Xue   |
| Week 3  | Basic Cryptography 2: Public-key cryptography    | RSA, Diffie-Hellman, public key encryption, Digital signature                                                                 | ??            |
| Week 4  | Network Security Principles                      | authenticated key exchange, PKI, and certification authorities                                                                | ??            |
| Week 5  | Network Security in Practice                     | secure sockets layer (SSL), internet protocol security (IPSec),<br>internet key exchange (IKE), virtual private network (VPN) | ??            |
| Week 6  | Authentication                                   | access control, password authentication, biometric authentication                                                             | ??            |
| Week 7  | Privacy-Enhancing technologies 1                 | post-quantum cryptography; Fully-homomorphic encryption and applications                                                      | ??            |
| Week 8  | Privacy-Enhancing technologies 2                 | commitment, zero-knowledge proofs;                                                                                            | ??            |
| Week 9  | Privacy-Enhancing technologies 3                 | secure multiparty computation                                                                                                 | ??            |
| Week 10 | Guest lecture                                    | security and privacy in Blockchain                                                                                            | N/A           |
| Week 11 |                                                  |                                                                                                                               | N/A           |
| Week 12 | Final presentation 1                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or EUROCRYPT                                                                      | N/A           |
| Week 13 | Final presentation 2                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or EUROCRYPT                                                                      | N/A           |

## Lecture 9: Privacy-Enhancing technologies 3: MPC



Diffie



**Rivest** 



Rivest



Yao



Goldwasser



Shamir

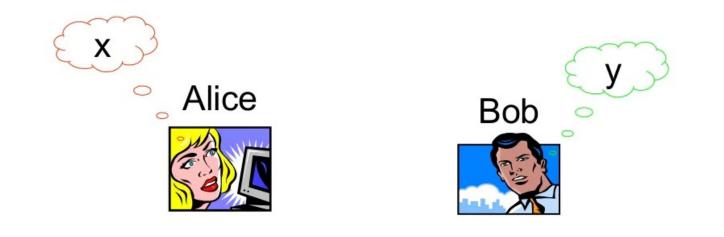
Hellman



Adelman

Adelman




Dertouzos



Micali Rackoff

| 1976              | 1977 | 1978            | 1982 | 1985           |
|-------------------|------|-----------------|------|----------------|
| New<br>directions | RSA  | Homomorphic Een | MPC  | Zero Knowledge |

## Yao's Millionaires' Problem



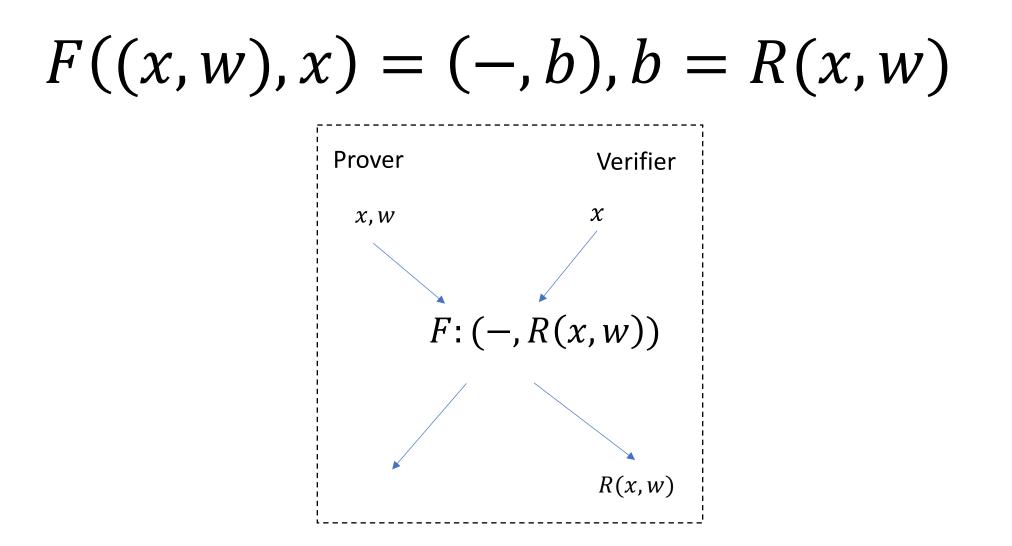
Whose value is greater?



Andrew C. Yao, Protocols for Secure Computations.

# $F(x,y) = \begin{cases} (0,1), & x < y \\ (1,0), & x \ge y \end{cases}$

## Two-party computation


- x is Alice's input, a is her output
- y is Bob's input, b is his output

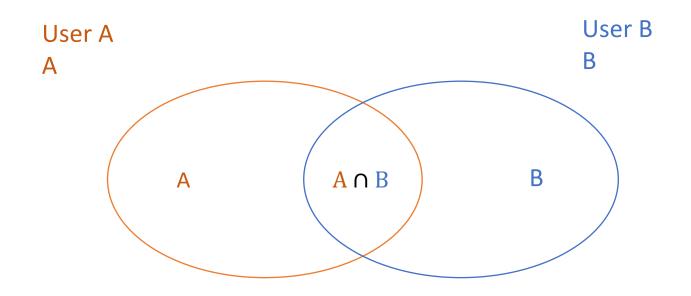
# F(x,y) = (a,b)

F(x, y) = (a, b)

# $F((x,w),x) = (-,b), b = 1 \ if \ x \in L$

## Zero-knowledge proof




## Multiparty Computation

 $F(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_n)$ 

- Electronic voting
- Bidding
- Etc.

## Two or more parties want to perform some joint computation, While guaranteeing "security" against "adversary behavior"

#### Example: Private set intersection

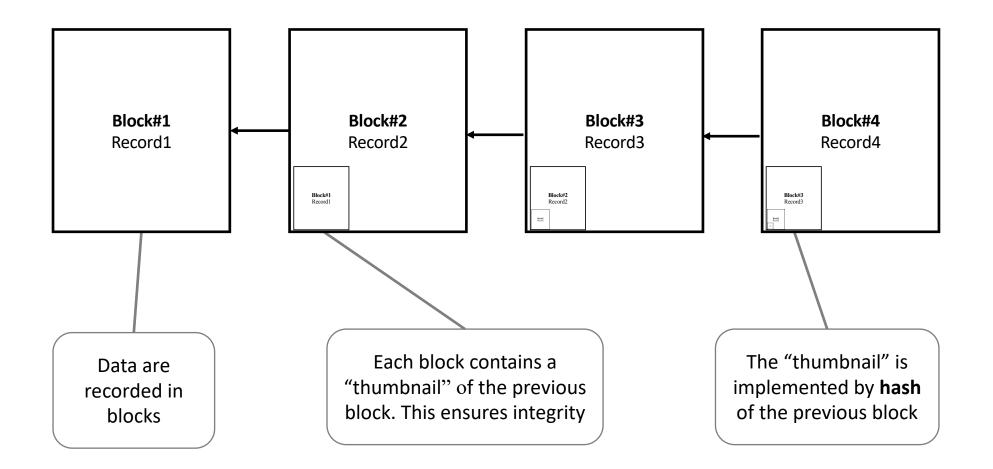


#### **Chrome: password checkup**

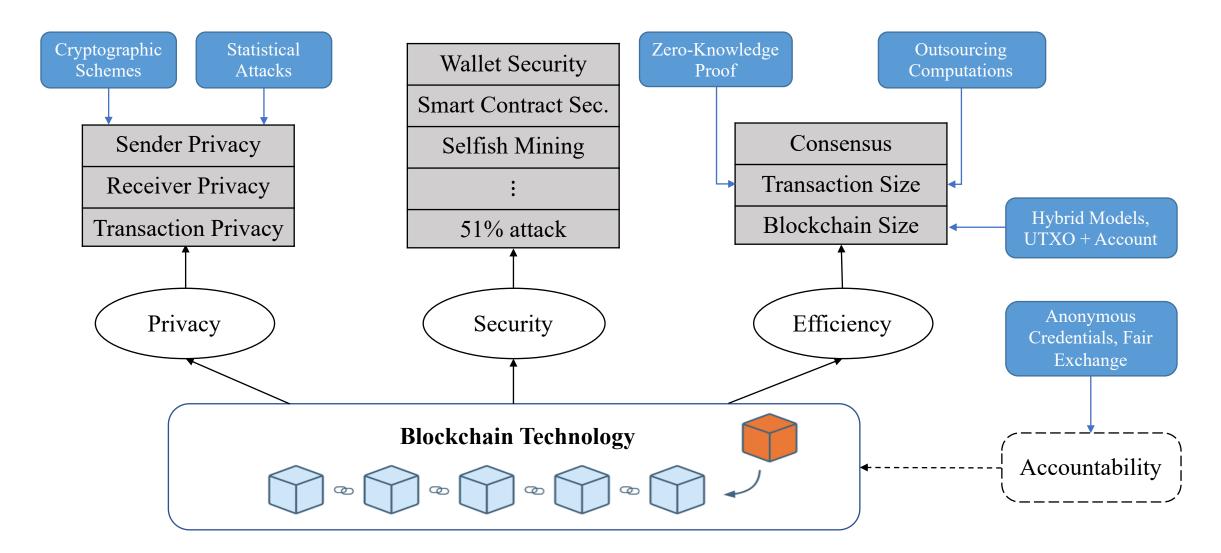
A is the set of your Autofill passwords, and B is the database of leaked accounts

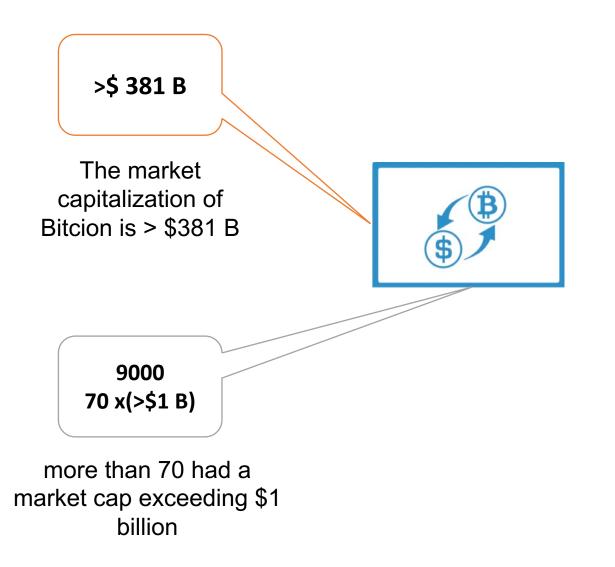
# How does it work?

## How to build efficient MPC?

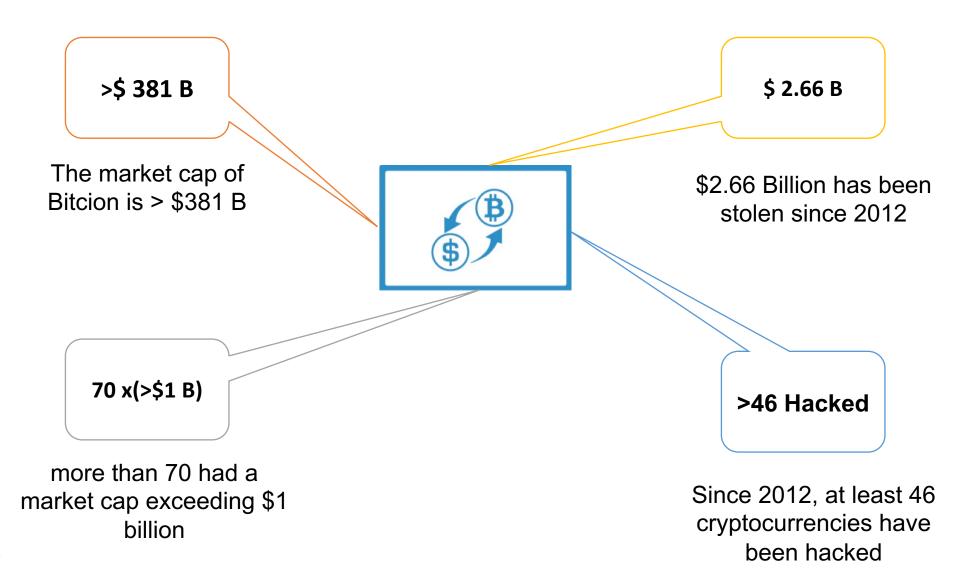

## Case Studies 1: Blockchain

| Date    | Topics                                           | Outline (tentative)                                                                                                           | Lecture notes |
|---------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Week 1  | Course Overview                                  | course plan, reading materials, grading, brief introduction to every topic                                                    | N/A           |
| Week 2  | Basic Cryptography 1: Symmetric-key cryptography | symmetric encryption, one-time pad, blockcipher, hash function, MAC, authenticated encryption.                                | Haiyang Xue   |
| Week 3  | Basic Cryptography 2: Public-key cryptography    | RSA, Diffie-Hellman, public key encryption, Digital signature                                                                 | ??            |
| Week 4  | Network Security Principles                      | authenticated key exchange, PKI, and certification authorities                                                                | ??            |
| Week 5  | Network Security in Practice                     | secure sockets layer (SSL), internet protocol security (IPSec),<br>internet key exchange (IKE), virtual private network (VPN) | ??            |
| Week 6  | Authentication                                   | access control, password authentication, biometric authentication                                                             | ??            |
| Week 7  | Privacy-Enhancing technologies 1                 | post-quantum cryptography; Fully-homomorphic encryption and applications                                                      | ??            |
| Week 8  | Privacy-Enhancing technologies 2                 | commitment, zero-knowledge proofs;                                                                                            | ??            |
| Week 9  | Privacy-Enhancing technologies 3                 | secure multiparty computation                                                                                                 | ??            |
| Week 10 | Guest lecture                                    | security and privacy in Blockchain                                                                                            | N/A           |
| Week 11 |                                                  |                                                                                                                               | N/A           |
| Week 12 | Final presentation 1                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or EUROCRYPT                                                                      | N/A           |
| Week 13 | Final presentation 2                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or<br>EUROCRYPT                                                                   | N/A           |


## Lecture 11: Case Studies 1: Blockchain


• What is Blockchain

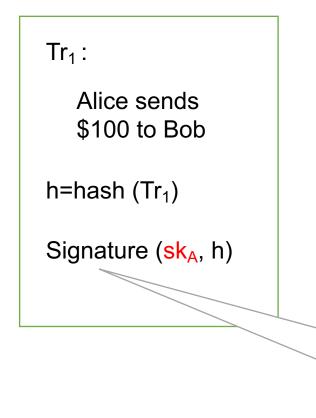
- Security in blockchain
  - Ex. Wallet security
- Privacy in blockchain
  - Ex. private tx,




# Security and privacy issues






## Cryptocurrency (wallet) security



# List of Hacked Cryptocurrencies

|                                                               | DATE               | EXCHANGE    | CAUSE OF HACK                   | AMOUNT STOLEN (USD             |
|---------------------------------------------------------------|--------------------|-------------|---------------------------------|--------------------------------|
|                                                               | 2022, January 17   | Crypto.com  | Unknown                         | \$34 million                   |
|                                                               | 2021, December 11  | AscendEX    | Obtained access to hot wallet   | \$80 million                   |
| Bitcoin's Biggest loss                                        | 2021, December 5   | BitMart     | Obtained access to hot wallet   | \$150 million                  |
| At the beginning of 2014, Mt Gox                              | 2021, August 19    | Liquid      | Obtained access to hot wallet   | \$97 million                   |
| was handling 70% of Bitcoin's                                 | 2021, April 29     | Hotbit      | Obtained access to hot wallet   | Nil                            |
| transactions.                                                 | 2020, December 23  | Livecoin    | Compromised system/servers      | Unknown                        |
| In Feb. 2014, Mt. Gox lost about                              | 2020, December 21  | EXMO        | Obtained access to hot wallet   | \$4 million                    |
| 740,000 bitcoins (6% of all bitcoin in existence at the time) | 2020, December 1   | BTC Markets | Internal staff<br>error/mistake | 270,000 user's private details |
| due to a "leak" in the wallet.                                | 2020, September 25 | KuCoin      | Data leak                       | \$275 million                  |
|                                                               | 2020, July 11      | Cashaa      | Malware                         | \$3.1 million                  |
|                                                               | 2020, June 29      | Balancer    | Vulnerability in protocol       | \$500,000                      |
|                                                               | 2020, April 19     | Lendf.me    | Bugs and Re-entrancy attack     | \$24.5 million                 |
| ttps://cryptosec.info/exchange-hacks/                         | 2020 April 19      | Uniswap     | Bugs and Re-entrancy            | \$500.000                      |

https://www.hedgewithcrypto.com/cryptocurrency-exchange-hacks/ 13/1/2024 A transaction in bitcoin looks like



The private key sk<sub>A</sub> is the only secret that Alice uses to generate this transaction

0 0

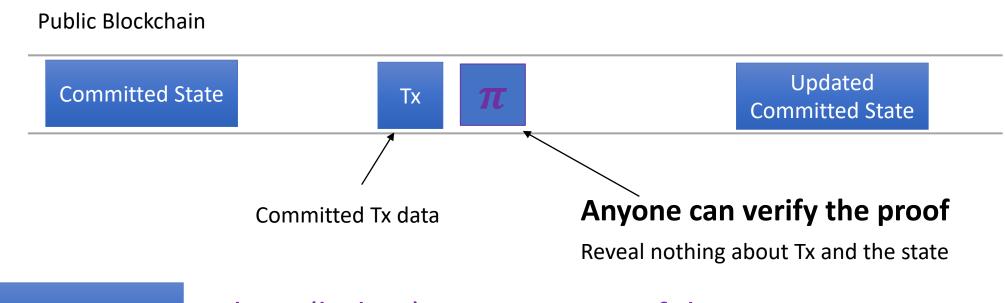
Signature is the standard ECDSA proposed by NIST In cryptocurrency, we need to protect the private key

• Cold Wallet: a hardware wallet only stores and protects your private key.



## • Threshold Cryptography: Distribute the trust

## Blockchain: The need of privacy


- Supply chain privacy
  - A car company does not want to reveal how much it pays to its supplier

- Payment Privacy
  - A company wants to keep its employee's salaries private

## Can we have private transactions over a public blockchain?

- Seems impossible
  - Universal verifiability --- > transaction data must be public
  - Otherwise, how can we verify the Tx
- Crypto magic
  - Crypto --- > Private Tx on a publicly verifiable blockchain

## Blockchain: The need of privacy



• Committed data : short (hiding) commitment of data

### • **Proof** $\pi$ : short zero-knowledge proof that

- Committed Tx data is consistent with the committed state
- The updated committed state is correct

## Lecture 12-13 Final presentation

| Date    | Topics                                           | Outline (tentative)                                                                                                           | Lecture notes |
|---------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Week 1  | Course Overview                                  | course plan, reading materials, grading, brief introduction to every topic                                                    | N/A           |
| Week 2  | Basic Cryptography 1: Symmetric-key cryptography | symmetric encryption, one-time pad, blockcipher, hash function, MAC, authenticated encryption.                                | Haiyang Xue   |
| Week 3  | Basic Cryptography 2: Public-key cryptography    | RSA, Diffie-Hellman, public key encryption, Digital signature                                                                 | ??            |
| Week 4  | Network Security Principles                      | authenticated key exchange, PKI, and certification authorities                                                                | ??            |
| Week 5  | Network Security in Practice                     | secure sockets layer (SSL), internet protocol security (IPSec),<br>internet key exchange (IKE), virtual private network (VPN) | ??            |
| Week 6  | Authentication                                   | access control, password authentication, biometric authentication                                                             | ??            |
| Week 7  | Privacy-Enhancing technologies 1                 | post-quantum cryptography; Fully-homomorphic encryption and applications                                                      | ??            |
| Week 8  | Privacy-Enhancing technologies 2                 | commitment, zero-knowledge proofs;                                                                                            | ??            |
| Week 9  | Privacy-Enhancing technologies 3                 | secure multiparty computation                                                                                                 | ??            |
| Week 10 | Guest lecture                                    | security and privacy in Blockchain                                                                                            | N/A           |
| Week 11 |                                                  |                                                                                                                               | N/A           |
| Week 12 | Final presentation 1                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or<br>EUROCRYPT                                                                   | N/A           |
| Week 13 | Final presentation 2                             | papers from S&P, CCS, USENIX, NDSS, CRYPTO, or<br>EUROCRYPT                                                                   | N/A           |


## Lecture notes

| Date            | Topics                                           | Lecture notes |
|-----------------|--------------------------------------------------|---------------|
| Week 1: Jan 10  | Course Overview                                  | N/A           |
| Week 2: Jan 17  | Basic Cryptography 1: Symmetric-key cryptography | Haiyang Xue   |
| Week 3: Jan 31  | Basic Cryptography 2: Public-key cryptography    | ??            |
| Week 4: Feb 7   | Network Security Principles                      | ??            |
| Week 5: Feb 14  | Network Security in Practice                     | ??            |
| Week 6: Feb 21  | Authentication                                   | ??            |
| Week 7: Feb 28  | Privacy-Enhancing technologies 1                 | ??            |
| Week 8: Mar 7   | Privacy-Enhancing technologies 2                 | ??            |
| Week 9: Mar 14  | Privacy-Enhancing technologies 3                 | ??            |
| Week 10: Mar 21 | Security and Privacy in Practice 1               | N/A           |
| Week 11: Mar 28 | Security and Privacy in Practice 2               | N/A           |
| Week 12: Apr 4  | Final presentation 1                             | N/A           |
| Week 13: Apr 11 | Final presentation 2                             | N/A           |

• Choose your lecture notes on/after Lecture 2

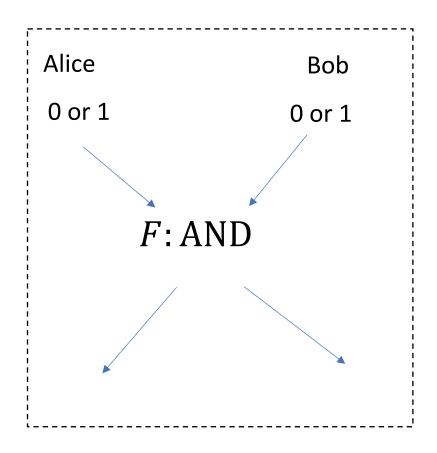
# Thank you and two more examples

# Security Examples



https://kentonbrothers.com/generalinfo/1984/

An example from Yoshi Kohno


# A fun privacy problem

- Bob and Alice want to check if they are interested in dating
  - If both are yes, the output is yes
  - If one is no, the output is no
- If Bob says NO, the output is always NO, no matter whether Alice said YES or NO.
  - Alice does not lose face.



<Pride and Prejudice>

# A fun privacy problem





<Pride and Prejudice>

# Lecture 3: Public-key cryptography

Case studies

• WhatsApp

|                                               | Today         |           |
|-----------------------------------------------|---------------|-----------|
| Messages you ser<br>now secured with e<br>for |               |           |
|                                               | Encrypted     | 8:46 AM ✔ |
| Tapi                                          | or more into. | -         |

#### Public Key Types

- Identity Key Pair A long-term Curve25519 key pair, generated at install time.
- Signed Pre Key A medium-term Curve25519 key pair, generated at install time, signed by the Identity Key, and rotated on a periodic timed basis.
- One-Time Pre Keys A queue of Curve25519 key pairs for one time use, generated at install time, and replenished as needed.

### **Session Key Types**

- Root Key A 32-byte value that is used to create Chain Keys.
- Chain Key A 32-byte value that is used to create Message Keys.
- Message Key An 80-byte value that is used to encrypt message contents. 32 bytes are used for an AES-256 key, 32 bytes for a HMAC-SHA256 key, and 16 bytes for an IV.