
COMP 6712 Advanced Security and Privacy 2023/24

Lecture note 9: Privacy-Enhancing Technologies 3
Secure Multiparty Computation

Bowen Cheng, Zhifeng Gu, Haoyu Zhao

April 29, 2024

In this lecture, we first introduce the concepts and definitions for secure computation.
Specifically, we introduce semi-honest and malicious security adversary models. We then
discuss how to construct protocols for secure MPC. Specifically, we make a detailed intro-
duction to Yao’s Protocol and GMW Protocol. Finally, we introduce custom protocols, with
a special case of Private Set Intersection.

1 Secure Computation: Concepts & definitions
Secure multi-party computation, also referred to as secure computation, multi-party com-
putation (MPC), or privacy-preserving computation, is a branch of cryptography that aims
to develop techniques for multiple parties to collaboratively perform computations on their
inputs while maintaining the confidentiality of those inputs. In contrast to conventional
cryptography tasks, where cryptography ensures the security and integrity of communica-
tion or storage, and the adversary is outside the system and participants, MPC safeguards
participant’s privacy from each other.

Specifically, in an MPC scenario, a given number of parties P1, P2, ..., Pn who do not
trust each other, nor any other third-party, have their own private data x1, x2, ..., xn, wish to
compute a public function (y1, y2, ..., yn) = F (x1, x2, ..., xn) without revealing their privacy.
That is to say, each of the participant Pi should know nothing other than its private input
xi and the corresponding output of the function yi.

1.1 Security Definition

Intuitively, the security definition in MPC should cover:

• Privacy: Each party should not learn anything other than their output

• Independence: Each party’s input should be independent from each others’ inputs

• Correctness: The output should be computed correctly

• Fairness: Each and every party should be delivered their output

1



COMP 6712 Advanced Security and Privacy 2023/24

Traditionally, security is established by providing a list of potential adversary actions
that are considered breaching it. However, this can be challenging as it is difficult to ensure
that the list covers all scenarios. Therefore, here we choose a general definition that first
provides an ideal world and then proves that the real world is equivalent in terms of security
to the ideal world [GM84], namely the read-ideal paradigm.

In the Ideal World, there is a trusted incorruptible third-party T who receives inputs
from all participants and computes the function F . The inputs and outputs of all parties are
transmitted in perfect confidence. Adversaries in the ideal world could still take control of
any parties Pi, Pj, ... other than T and make the attack, but it could be recognized since their
choice inputs are independent of honest parties’ inputs. In contrast, in the Real World,
there does not exist any trustworthy party. Instead, parties must communicate through
a prescribed protocol π, which defines each party Pi a function πi to encode their next
message. Messages are exchanged in a peer-to-peer (P2P) form as there is no third-party to
relay messages. Adversaries in the real world could also corrupt parties.

The computation security in MPC is therefore defined as, for every real-world adversary
A, there exists an ideal adversary A′, s.t. joint distribution (HonestOutput, AdvOutput) is
indistinguishable. If the application proves to be secure in the ideal case, it can be inferred
that it is also secure when a real protocol is implemented instead, as long as the protocol
security is proven. To prove the security of a protocol under such definition, we only need
to prove that the functionality of the real world is indistinguishable from the ideal world, so
that the protocol is at least as safe as the ideal functionality.

1.2 Adversary Modeling

Unlike traditional cryptography like digital signature where we believe adversaries are outside
the participants, in MPC scenarios, we must assume some of the participants are corrupted.
These corrupted parties as adversaries may try to breach the security of the protocol. The
solutions are different when we have the assumption that the number of corrupted parties t
is smaller than half the number of all parties n/2, or t ≥ n/2 may happen. The latter cases
includes that one party in 2PC is adversary, or unlimited participants could be corrupted
and collude with each other to attack honest parties.

Adversaries can be categorized by how much they hurt to the security of the protocol.
There are essentially two types of adversaries in terms of behavior, and each can be modeled
by a form of security, namely semi-honest and malicious adversary, to be detailed in the
following subsections.

Security against different adversaries can also be categorized on various other assump-
tions. It could be against polynomial-time adversary computational power (i.e. based on
computationally hard problem like factorization), or unbounded information-theoretic secu-
rity (like relying on physical unavailability on channels).

1.2.1 Semi-honest Security

In scenarios described by semi-honest security, adversaries merely try to learn more about
honest parties by inspecting communications, but still execute the protocol specification
honesty. Multiple adversaries could also share their information eavesdropped from honest

2



COMP 6712 Advanced Security and Privacy 2023/24

parties, and make common decisions on their inputs. Semi-honest security is commonly
referred to as passive security, as adversaries are assumed not to make any attacks on other
than eavesdropping.

In semi-honest models, honest parties who have their own input and message, and ad-
versaries who view all parties they controlled execute the protocol honestly. Semi-honest
security can be proven by (1) define the ideal functionality in the ideal world and (2) con-
struct a simulator, and prove that the view of adversaries in the simulator is indistinguishable
with the real world.

It is worth noting that semi-honest is rather a naive assumption, resulting in weak security
in the real world. However, protocols secure against semi-honest adversaries can be useful
in preventing unintended information leakage, and are often used as the first step towards
higher security.

1.2.2 Malicious Security

In the malicious scenario, adversaries may arbitrarily deviate from the protocol, launching
attack actively to cheat other parties. Other than eavesdropping messages in the semi-honest
setting, a malicious adversary could take actions during the protocol execution in addition to
analyzing the protocol. This includes the ability to control, manipulate and inject malicious
message arbitrarily to other parties.

There are two important additions to consider in protocol design: (1) When the adversary
deviate from the protocol, it may have the possibility of affecting the outputs delivery to
honest parties, including manipulation or prevention on the result; (2) The input of adversary
could be not well-defined.

Since the deviation of the protocol by malicious adversaries could affect the output of
honest parties, protocol security under these circumstances cannot guarantee the correctness
of the message honest parties receive. In this case, the protocol should be able to detect the
manipulation of the message and force the communication to abort. The secure protocol
against malicious attacks should also provide that as long as honest parties do obtain the
message, it is proven to be correct. In both cases, honest parties’ privacy is protected

To define a protocol dealing with the second addition, the simulator in the ideal world
should select inputs for the corrupt parties, and the goal is to ensure that the effects achieved
by these inputs in the ideal world are equivalent to those in the real world. The process is
named Extraction from the real-world adversary input to construct ideal world input.

Protocols that achieve security against malicious adversaries provide a very high guar-
antee for MPC security. Generally, such security against active adversaries will lead to a
reduction in efficiency. Compromising in the strict definition could achieve a balance in
efficiency. Covert security [AL10] is designed to fit the setting that adversaries could cheat
actively but only if they are not caught.

3



COMP 6712 Advanced Security and Privacy 2023/24

2 Yao’s Protocol for Secure MPC

2.1 Oblivious Transfer (OT)

Before we start introducing Yao’s protocol for secure MPC, we introduce a basic tool called
oblivious transfer, which ensures that the receiver can securely select one thing from the
sender.

Figure 1: Oblivious Transfer

As shown in Figure 1, the standard definition of 1-out-of-2 OT involves two parties, a
Sender S holding two secrets m0, m1, and a receiver R holding a choice bit b ∈ 0, 1. OT is a
protocol allowing R to obtain mb while learning nothing about the “other” secret m1−b. At
the same time, S does not learn anything at all. In other words, S doesn’t know which m is
choosen by R.

OT is quite useful in MPC, as OT is theoretically equivalent to MPC as shown in [Kil88].
Given OT, one can build MPC without any additional assumptions. And one can directly
obtain OT from MPC vice versa.

Figure 2: OT construction

So the problem is how to construct OT in practice. As shown in Figure 2, receiver R
wants to select Wc from W0, W1. The OT step can be as follows:

• The receiver generates valid secret public key pair (skc, pkc) and blind public key pk1−c

and sends pk0 and pk1 to the sender.

• Sender encrypts messages W0 and W1 with pk0 and pk1 to get Epk0(W0) and Epk1(W1)
and sends the encryption to the receiver.

• Receiver receives Epk0(W0) and Epk1(W1) and tries to decrypt the ciphertext using
private key skc. As the receiver only has skc, he will only get Wc but have no access
to W1−c.

4



COMP 6712 Advanced Security and Privacy 2023/24

The process needs a public-key encryption that supports blind key generation, i.e. the
ability to sample a public key without knowledge of the secret key, like ElGamal algorithm.

A 1-out-of-2 OT is a cryptographic protocol securely implementing the function FOT

defined below:

• Parameters: Two parties: Sender S and Receiver R. S has input secrets m0, m1 and R
has a selection bit b ∈ 0, 1.

• Functionality FOT : S sends m0, m1 to FOT , and R sends b to FOT . R receives mb, and
S receives nothing.

2.2 History of MPC

The idea of secure computation was introduced by Andrew Yao in the early 1980s [Yao82].
Secure computation was primarily of only theoretical interest for the next twenty years. In
the early 2000s, algorithmic improvements and computing costs make it more realistic to
build practical systems, e.g. Fairplay [MNPS04]. Since then the speed of MPC protocols has
improved by more than five orders of magnitude.

2.3 Yao’s Garble Circuit

First, we discuss two-party computation. Every computation of function could be transferred
to computing a Boolean circuit. Yao’s protocol is a semi-honest secure (2-party) computation
for Boolean circuits. Before we start, we focus on the semi-honest case. [GMW87] shows that
if we can a construct semi-honest secure MPC for any circuit, we can construct a malicious
secure MPC for any circuit. Here is a Yao’s garble circuit for the two-party, boolean case.
And we take the AND gate for example.

Figure 3: AND gate truth table

Figure 4: Random substitution

5



COMP 6712 Advanced Security and Privacy 2023/24

Figure 5: Encryption twice and shuffle

As shown in Figure 3, this is the truth table for a normal AND gate. Then the sender
(Alice) substitutes each item with a random number as in Figure 4. Next, the sender encrypts
Z twice, using X and y as secret keys as illustrated in Figure 5. And the sender shuffles the
encrypted table and sends the last encrypted column to the receiver (Bob).

Figure 6: Communications between two parties

Then, as illustrated in Figure 6, Alice sends a random number X0/X1 according to her
input X = 0/1, Bob gets random number Y0/Y1 according to his input Y = 0/1 via oblivious
transfer.

Figure 7: Bob calculates the garbled circuit

As shown in Figure 7, we assume X = 0, Y = −1, then Bob will have X0 and Y1. Bob
tries to decrypt Z in every row, only the 3rd row can be decrypted successfully, and Bob
gets Z0. But Bob doesn’t know whether Z0 represents 0 or 1.

At last, as shown in Figure 8, Alice and Bob share the computation result. As Alice
knows the true value of Z0, she recovers the true value and shares it with Bob.

The simple AND gate garbled circuit can be generalized to garbled general circuit frame-
work to solve much more complex computation problems as Figure 9. The process of garbling
a circuit:

6



COMP 6712 Advanced Security and Privacy 2023/24

Figure 8: Alice and Bob share computation result

Figure 9: Garbled general circuit framework

• Pick random labels W0; W1 on each wire

• “Encrypt” truth table of each gate

• Garbled circuit all encrypted gated

• Garbled encoding one label per wire

The process of garbled evaluation:

• Only one ciphertext per gate is decrypted

• Result of decryption is the value on the outgoing wire

3 Goldreich-Micali-Wigderson (GMW) Protocol
Unlike Yao’s protocol, the GMW protocol [GMW87] can extend to multi-party (more than
two parties) scenarios. The GMW protocol employs a boolean-circuit representation to
compute functions and offers security against semi-honest adversaries, even when multiple
parties are corrupted. The fundamental semi-honest protocol utilizes Oblivious Transfer
(OT) to execute boolean gates effectively. Furthermore, this protocol can also be extended
to accommodate arithmetic circuits. The term GMW is often used for a protocol that
combines the two techniques into an n-party multi-party computation protocol which is
actively secure.

7



COMP 6712 Advanced Security and Privacy 2023/24

3.1 Extending from OT 2
1 to OT n

1

Consider Alice holding x1, . . . , xn ∈ {0, 1}ℓ and Bob holding i ∈ {1, . . . , n}. Through OT n
1 ,

Bob obtains xi while Alice knows nothing about i. OT n
1 can be constructed through the

following steps.

1. Alice generates k0 = 0ℓ and randomly generates kj ∈ {0, 1}ℓ, j = 1, . . . , n.

2. Alice and Bob perform OT 2
1 operation n times. At jth operation, Alice provides

k0 ⊕ · · · ⊕ kj−1 ⊕ xj and kj. If j = i, Bob chooses the former. If j ̸= i, Bob chooses the
latter.

3. Bob obtains {k0, . . . , ki−1} from the 1st to (i− 1)th OT 2
1 and k0 ⊕ · · · ⊕ ki−1 ⊕ xi from

the ith OT 2
1 to decrypt xi.

Let us analyze the security of the above OT n
1 . For Bob, his security can be directly

inherited from OT 2
1 , namely OT 2

1 ensures that Alice does not know whether Bob chooses the
former or the latter in each round, so Alice does not know the true value of i. For Alice,
we consider that Bob chose the former in ith round. If j < i, Bob chooses kj from OT 2

1 ,
not obtaining any information of xj. If j > i, Bob at most can obtain xj ⊕ ki ⊕ others. Not
knowing Alice randomly generating ki, Bob does not know xj.

3.2 Securely Computing Any Constant Size Function using OT n
1

OT n
1 can address a very common problem: securely computing any constant size function.

Constant size function refers to functions whose input values are limited.
Consider Alice and Bob owning private input x ∈ SA, y ∈ SB respectively. They want to
compute f(x, y).

1. Alice computes x with all possible values of y to obtain A = {f(x, y1), f(x, y2), . . . , f(x, yn)}.

2. Alice performs OT n
1 with Bob. Alice provides A and Bob provides y = yi according to

i.

3. Bob obtains f(x, yi) = f(x, y) and shares the result to Alice if necessary.

OT n
1 ensures that Bob only obtains the final result f(x, yi) and get nothing more about

x. At the same time, OT n
1 ensures that Alice cannot know i from Bob.

3.3 The GMW Protocol

Let’s consider the basic case. Alice and Bob own one bit of input x, y ∈ {0, 1} and they
want to compute w = G(x, y), where G is a logic gate circuit. The GMW protocol contains
the following steps.

1. Alice randomly generates xa ∈ {0, 1} and sends xb = x ⊕ xa to Bob. Due to the
randomness of xa, Bob cannot decrypt x.

8



COMP 6712 Advanced Security and Privacy 2023/24

2. Bob randomly generates yb ∈ {0, 1} and sends ya = y ⊕ yb to Alice. Due to the
randomness of yb, Alice cannot decrypt y.

3. Alice randomly generates za ∈ {0, 1} and enumerates all the possible values of f(xb, yb) =
za⊕G(xa⊕xb, ya⊕yb). Due to xb, yb ∈ {0, 1}, f(xb, yb) has totally four possible values,
namely, {f(0, 0), f(0, 1), f(1, 0), f(1, 1)}.

4. Alice and Bob perform OT 4
1 . Alice provides {f(0, 0), f(0, 1), f(1, 0), f(1, 1)} and Bob

provides i corresponding to (xb, yb). OT 4
1 ensures that Bob only obtains the final result

f(xb, yb) and Alice does not know i so that she knows nothing about xb, yb, f(xb, yb).

5. Bob gets zb = f(xb, yb).

6. Alice and Bob can reveal za, zb to get the true value of z. za ⊕ zb = za ⊕ za ⊕G(xa ⊕
xb, ya ⊕ yb) = G(xa ⊕ xb, ya ⊕ yb) = G(x, y) = z

For more complex logic circuits, Alice and Bob will calculate each logic gate sequentially
using the above method to obtain the shared value of wa, wb of each line w. The GMW
protocol guarantees that w = wa ⊕ wb. At last, Alice and Bob only reveal the shared value
of the output line of the circuit to obtain the result of the logic circuit. Alice and Bob do
not know the true value of the intermediate circuit because each side only has half of the
shared value.

Please refer to [GMW87] for more details.

4 Custom Protocols
Custom protocols refer to protocols that are specifically designed and developed to address
specific requirements or solve particular problems. These protocols are tailored to meet the
unique needs of a specific application, system, or network environment, rather than relying
on existing generic protocols.

When designing a custom protocol, the protocol designer has the flexibility to define the
communication patterns, message formats, cryptographic techniques, and security assump-
tions that best suit the intended use case. This allows for a more fine-grained control over
the protocol’s behavior and performance characteristics.

Custom protocols can be developed for various purposes, such as secure communication,
data exchange, authentication, privacy preservation, or any other specific requirement. They
may utilize a combination of cryptographic primitives, algorithms, and techniques to achieve
their intended goals.

4.1 Private Set Intersection (PSI)

Private Set Intersection (PSI) is a cryptographic protocol that allows two or more parties to
compute the intersection of their respective private sets without revealing any information
about the elements in their sets to each other.

To illustrate Private Set Intersection (PSI), we consider a simplified scenario as depicted
in Figure 10. In this scenario, Bob wishes to determine whether Alice possesses a specific

9



COMP 6712 Advanced Security and Privacy 2023/24

Figure 10: Example of Private Set Intersection (PSI)

number yi within a set X. To accomplish this, they employ PSI by exchanging holding
sets and computing the intersection set, ultimately solving Bob’s query. While one possible
method involves utilizing a hash function to calculate key values and transmitting them
to PSI, this approach may be deemed insecure, particularly when dealing with numbers
with limited entropy, such as phone numbers. Alternatively, a promising approach involves
employing the Diffie-Hellman algorithm. However, this method may introduce some time
overhead due to its computational requirements.

Please refer to [PSZ18] for more details.

References
[AL10] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Ef-

ficient protocols for realistic adversaries. Journal of Cryptology, 23(2):281–343,
2010.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, 1984.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proceedings of
the 19th Annual ACM Symposium on Theory of Computing, 1987, New York,
New York, USA, 1987.

[Kil88] J Kilian. Founding cryptography on oblivious transfer. Acm Stoc, 1988.

[MNPS04] D. Malkhi, N. Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party
computation system. 2004.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set
intersection based on ot extension. ACM Transactions on Privacy and Security
(TOPS), 21(2):1–35, 2018.

[Yao82] Andrew C. Yao. Protocols for secure computation. In Foundations of Computer
Science, 1982. SFCS ’08. 23rd Annual Symposium on, 1982.

10


	Secure Computation: Concepts & definitions
	Security Definition
	Adversary Modeling
	Semi-honest Security
	Malicious Security


	Yao's Protocol for Secure MPC
	Oblivious Transfer (OT)
	History of MPC
	Yao's Garble Circuit

	Goldreich-Micali-Wigderson (GMW) Protocol
	Extending from OT12 to OT1n
	Securely Computing Any Constant Size Function using OT1n
	The GMW Protocol

	Custom Protocols
	Private Set Intersection (PSI)


