
COMP6712 Lecture Note 8

Privacy-Enhancing Technologies 2: Zero Knowledge Proof

Bin XIE, Bowen CUI and Xuyuan CAI

April 2, 2024

Summary

In this lecture, we delve into identification protocols, demonstrating how to construct a robust
signature scheme grounded in such protocols. Our focus begins with exploring Schnorr’s identifica-
tion protocol, which is renowned for its elegance and efficiency, from which the Schnorr signature
scheme emerges. This scheme boasts provable security under the Discrete Logarithm (DL) as-
sumption, leveraging a hash function treated as a random oracle. Expanding our discussion, we
generalize these protocols, introducing the concept of Sigma protocols while offering insights into
various implementations. Lastly, we delve into non-interactive zero-knowledge proof systems, ex-
ploring their application in higher dimensions. Additionally, we provide an overview of SNARK
techniques, showcasing their ability to verify arbitrary NP relations using arithmetic circuits.

1 Identification Protocols and Signatures

1.1 Identification/Authentication Paradigm

An identification protocol is a cryptographic protocol that allows one party (the prover) to prove its
identity to another party (the verifier) in a secure and verifiable manner. The goal of an identification
protocol is to establish trust and confidence between the parties involved in a communication or
transaction.

Abstractly, the identification problem involves two parties, a prover and a verifier.The prover has
a secret key sk that it uses to convince the verifier of its identity,while the verifier has a verification
key vk to confirm the prover’s claim.

Definition 1.1 (Identification Protocol). An identification protocol is a triple I = (G,P, V).

• G is a probabilistic, key generation algorithm, that takes no input, and outputs a pair (vk , sk),
where vk is called the verification key andsk is called the secret key.

• P is an interactive protocol algorithm called the prover, which takes as input a secret key sk ,
as output by G .

• V an interactive protocol algorithm called the verifier, which takes as input a verification key
vk , as output by G, and which outputs acceptor reject.

In the protocol, P and V interact with each other. For all possible outputs (vk , sk) of G, if P is
initialized by sk and v is initialized by vk, V output accept with probability of 1 at the end of the
interaction. between P and V .

1

Prover Verifier

P V

G

accept or reject

sk vk

Figure 1: Identification Protocol.

Figure 2: A toy example: Ali Baba Cave

1.2 A toy example: Ali Baba Cave

There is a well-known story presenting the fundamental ideas of zero-knowledge proofs, first pub-
lished in 1990 by Jean-Jacques Quisquater and others in their paper ”How to Explain Zero-
Knowledge Protocols to Your Children”. As shown in fig,the two parties in the zero-knowledge proof
story are Alice as the prover of the statement, and Bob, the verifier of the statement[QQQ+89].

In this story, Alice has uncovered the secret word used to open a magic door in a cave. The
cave is shaped like a ring, with the entrance on one side and the magic door blocking the opposite
side. Bob wants to know whether Alice knows the secret word; but Alice, being a very private
person, does not want to reveal her knowledge (the secret word) to Bob or to reveal the fact of her
knowledge to the world in general.

They label the left and right paths from the entrance 1 and 0. First, Bob waits outside the cave
as Alice goes in. Alice takes either path 1 or 0; Bob is not allowed to see which path she takes.
Then, Bob enters the cave and shouts the name of the path he wants her to use to return, either
1 or 0, chosen at random. Providing she really does know the magic word, this is easy: she opens
the door, if necessary, and returns along the desired path.

Suppose Alice did not know the magic world, she will randomly select one path 1 or 0. Then,
when bob shouts the name of the path he want, Alice has a 1/2 chance to return from the desired
path because she can not open the door. If we repeat this process n times, the probability of Alice
returning from the desired path is 1/2n.

This process can be concretely formalized as a Schooner identification protocol, assuming the

2

P (α, u)

αt
R← Zq, ut ← gαt

c
R← C

αz ← αt + αc mod q

gαz
?
= ut · uc

V (u)

ut

c

αz

Figure 3: Schnorr Identification Protocol.

magic word is u = gα. In this protocol, the first step is for Alice to commit to gαt . Then Bob
randomly chooses a challenge e. Finally, Alice responds with αz = αt + e · α. If the equation
gz = gαt · ue holds, Bob will accept that Alice know the magic word.

If Alice doesn’t know the key, the proof was accepted with 1/n. If repeat this process n times,
Bob will accpet with 1/2n

1.3 Schnorr’s Identification Protocol

Let G be a cyclic group of prime order q with generator g ∈ G. Suppose the prover P has a secret
key sk = α ∈ Zq, and the corresponding public verification key is vk = u = gα ∈ G. To prove
his identity to a verifier V , P wants to convince V that he knows α The simplest way to do this
would be for P simply send α to V . Instead, Schnorr’s protocol is a clearly designed interective
protocol that allows P to convince V that he knows the discrete logarithm of u to the base g,
without actually sending this value to V [Sch90].

Definition 1.2 (Schnorr’s Identification Protocol). Let C be the subset of Zq, Schnorr’s iden-
tification protocol is Isch = (G,P, V), where:

• The key generation algorithm G runs as follows:

α
R← Zq, u← gα.

The verification key is vk := u, while the secret key is sk := α.

• P is a prover algorithm which takes a secret key sk = α as input.

• V is a verifier algorithm which takes a verification key vk = u as input.

• The protocol between P and V runs as follows, where the prover P is initialized with sk = α,
and the verifier V is initialized with vk = u.

1. P computes αt
R← Zq, ut ← gαt, and sends ut to V ;

2. V computes challenge c
R← C then sends c to P ;

3. P computes αz ← αt + αc ∈ Zq , and sends αz to V ;

4. V checks if gαz = ut · uc holds, if so, V outputs accept, otherwise outputs reject.

3

An interaction between P (α) and V (u) generates a conversation(ut, c, αz) ∈ G × C × Zq. We
call such a conversation an accepting conversation for u if V ’s check passes, i.e., if gg

α
z . It is

easy to see that an interaction between P and V always generates an accepting conversation, since
if ut ← gαt and αz = αt + αc then

gαz = ut · uc

Therefore, Schnorr’s protocol satisfies the basic correctness requirement that any identification
protocol must satisfy.

Theorem 1.1 (Security against Direct Attacks). The Schnorr’s protocol is secure against
direct attacks. In proving this, we can see that any efficient adversary that can succeed in a direct
impersonation attack with non-negligible probability can be turned into an algorithm that efficiently
recovers the secret key α from the verification key u. For this reason, Schnorr’s protocol is sometimes
called a “proof of knowledge” of a discrete logarithm.

Proof idea. Suppose A has advantage ϵ in attacking Isch. The challenger generates the verification
key u = gα. In his impersonation attempt, A generates the first transcript ut arbitrarily. To succeed,
A must respond to the random challenge c with a valid response αz which satisfies gαz = ut · uc.
Actually, if A can generate a valid response to such a challenge with probability ϵ, it should be able
to generate a valid response to 2 such challenges with probability ϵ2.

Then, we can take advantage of A to compute the discrete logarithm of a random u ∈ G. Use
u as the verification key in Isch, and let A generate the first transcript ut. Then, we feed a random
challenge c to A and hope it can generate a valid response αz. If this happens, we can rewind
A’s internal state back to the point when it just finished generating ut, and feed it with another
challenge c′, and hope it to generates another valid response u′t.

If all these happens (with probability ≈ ϵ2), then we obtain 2 valid transcripts (ut, c, αz) and
(ut, c

′, α′
z) for a given verification key u and the with first flows ut. Moreover, with overwhelming

probability, we have c′ ̸= c. Then, since either transcript is valid, we have the following equations:

gαz = ut · uc, gα
′
z = ut · uc

′
.

Dividing the first equation by the second, the ut’s cancel, and we have

gαz−α′
z = uc−c′ .

Since c ̸= c′ and the group order q is prime, 1/(c− c′) must exists in Zq. So we can get:

g(αz−α′
z)/(c−c′) = u.

Therefore, the security of Schnorr is equivalent to the possibility of constructing two valid
transcripts with probability ≈ ϵ2, which is still a discrete logarithm problem. While assume the
dicrete logarithm of G is hard. If someone passes the verification of schnorr Identification, we must
have he knows the secrete α

We showed that any adversary which can successfully perform a direct attack with non-negligible
probability can be converted into an algorithm that efficiently recovers the secret key α from the
verification key u. For this reason, Schnorr’s identification protocol is sometimes referred to as a
proof of knowledge of discrete logarithms.

Theorem 1.2 (Security against Eavesdropping Attacks). We have shown that Schnorr’s
identification protocol is secure against direct attacks, under the DL assumption. In fact, under the
same assumption, we can show that Schnorr’s identification protocol is secure against eavesdropping
attacks as well.

4

Direct Challenger

(sk , vk)
R← G

V (vk)

vk

Sim(vk)

Sim(vk)

...

Impersonation Attempt

Eavesdropping
adversary A

Direct adversary B

accept or reject

Figure 4: Proof of Theorem 1.2.

Proof idea. Now, in an eavesdropping attack, the adversary obtains vk and a list of transcripts —
conversations between P (on input sk) and V (on input vk). The idea is to show that these
conversations do not help the adversary, because the adversary could have efficiently generated
these conversations by himself, given vk (but not sk). If we can show this, then we are done.

Indeed, supposeA is an adversary whose advantage in carrying out a successful impersonation
via an eavesdropping attack is non-negligible. Then, we have another B in direct attacks. B can
generates the valid respond αz, c, ut by themselves, with probability ϵ. Then he feed them to A.
So, it is easy to prove that adversary A has the same probability to extract α as adversary B.

Definition 1.3 (Honest Verifier Zero-Knowledge, HVZK). Let I = (G,P, V) be an identi-
fication protocol. We say that I is honest verifier zero-knowledge (HVZK) if there is an efficient
probabilistic simulation algorithm Sim such that for all possible (vk , sk) generated by G, the output
of Sim(vk) is indistinguishable with the transcript between P (sk) and V (vk).

The term “zero knowledge” is meant to suggest that an adversary learns nothing from P , because
an adversary can simulate conversations on his own (using the algorithm Sim), without knowing sk
. The term “honest verifier” conveys the fact this simulation only works for conversations between
P and the actual, “honest” verifier V , and not some arbitrary, “dishonest” verifier,

Theorem 1.3. Schnorr’s identification protocol is HVZK.

Proof. The idea is that in generating a simulated conversation

(ut, c, αz)

, we do not need to generate the messages of the conversation in the given order, as in a real
conversation between P and V . Indeed, our simulator Sim generates the messages in reverse order.
On input vk = u, the simulator Sim computes

αz
R← Zq, c

R← C, ut ← gαz/uc

5

Now we argue that the output of Sim on input vk = u has the right distribution. Because αz and
c are independent and the value ut is uniquely determined by ut = gαz/uc.It should be clear that
this is the same as the output distribution of the simulator.

Theorem 1.4 (Schnorr’s Security). If Schnorr’s identification protocol is secure against direct
attacks, then it is also secure against eavesdropping attacks.

Proof. This theorem comes directly from Theorem 1.3 and Theorem 1.2.

To summarize, Schnorr’s identification protocol has the following three important properties:

1. Completeness: if P and V execute the protocol honestly, the proof is accept.

2. Soundness: If V outputs accept, we can extract a valid witness α effectively.

3. Honest Verifier Zero-Knowledge: we can efficiently simulate valid transcripts even if we
do not know the witness α.

1.4 Schnorr Signature

The Schnorr’s identification protocol can be convert into a signature scheme. The signature scheme
can be proven secure in the random oracle model under the DL assumption. Later in this chapter,
we will see that this construction is actually a specific instance of a more general construction.

We start with Schnorr’s identification protocol Isch, which is defined in terms of a cyclic group
G of prime order q with generator g ∈ G, along with a challenge space C ⊆ Zq. Now, we need a
hash function H :M×G→ C, which will be modeled as a random oracle, whereM is the message
space in the signature scheme [Sch91].

Definition 1.4 (Schnorr Signature). Schnorr signature scheme isSsch = (G,S, V), where:

• G is a probabilistic key generation algorithm that runs as follows:

α
R← Zq, u← gα.

The public key is pk := u, while the secret key is sk := α.

• S is a signing algorithm which signs a message m ∈M using a secret key sk = α. S runs as
follows:

αt
R← Zq, ut ← gαt , c← H(m,ut), αz ← αt + αc.

S outputs σ := (ut, αz) as the signature on the message m.

• V is a verification algorithm which verifies a signature σ = (ut, αz) on a message m ∈ M
using a public key pk = u. To this end, S computes c ← H(m,ut), and output accept if and
only if gαz = ut · uc.

6

1.5 The Identification for Decisional Diffie-Hellman

The Identification for Decisional Diffie-Hellman (ID-DDH) algorithm is a cryptographic protocol
that allows a prover to prove its knowledge of a Diffie-Hellman private key to a verifier in a secure
and verifiable manner. The goal of the protocol is to provide identity authentication based on the
Decisional Diffie-Hellman (DDH) assumption.

Definition 1.5 (The Identification for Decisional Diffie-Hellman). Schnorr signature scheme
is SIDDDH

= (G,P, V), where:

• The key generation algorithm G runs as follows:

β
R← Zq, v ← gβ, w ← uβ.

The verified key is vk := (u, v, w), while the secret key is sk := β.

• P is a prover algorithm which takes a secret key sk = β as input.

• V is a verifier algorithm which takes a verification key vk = (u, v, w) as input.

• The protocol between P and V runs as follows, where the prover P is initialized with sk = β,
and the verifier V is initialized with vk = (u, v, w).

1. P computes βt
R← Zq, vt ← gβt,and wt ← uβt, then sends ut, wt to V ;

2. V computes challenge c
R← C then sends c to P , where C is the subset of Zq;

3. P computes βz ← βt + βc ∈ Zq , and sends βz to V ;

4. V checks if gβz = vt ·vc and uβz = wt ·wc holds, if so, V outputs accept, otherwise outputs
reject.

The Sigma protocol satisfied the following properties:

1. Completeness: If P and V execute the protocol honestly, gβz = gβt+βc = vt · vc and uβz =
uβt+βc = wt · wc must hold, the proof is accepted.

2. Soundness: Given two valid transaction (ut1 , wt1 , c1, βz1) and (ut2 , wt2 , c2, βz2) with z1 ̸= z2,
the verifier can extract the witness β.

3. Honest Verifier Zero-Knowledge: Witout knonwing the witness, simulator always output
an accepting conversation for input challenge c.

βz
R← Zq, c

R← C, vt =
gβz

vc
, ut =

uβz

uc

2 Sigma Protocol

2.1 Definition of Sigma Protocol

The introduced Schnorr’s protocol above is a special case of a series of protocols named Sigma Pro-
tocols. To better understand Sigma Protocol, we introduce some basic concepts and then concisely
describe them.

Definition 2.1 (Binary Relation). R ⊆ X ×Y is a binary relation, where X ,Y and R are finite
sets.

7

Definition 2.2 (Language). Let R ⊆ X × Y be a binary relation. We call y ∈ Y a statement,
and x is a witness if (x, y) ∈ R holds. The language LR is the set of all true statements in R.

RL = { y | ∃x ∈ X s.t. (x, y) ∈ R}.

For example, RDDH is relation defined over Zp ×G3
p where RDDH = {(β, (u, v, w)) ∈ Zp ×G3

p :

v = gβ ∧ w = uβ}. LDDH = { (u, v, w) | ∃β ∈ Zp s.t. (β, (u, v, w)) ∈ RDDH}.
Here, we give the definition of a sigma protocol.

Definition 2.3 (Sigma Protocol). Let R ⊆ X × Y be a binary relation. A Sigma protocol over
R is a four-round interactions between two parties (P and V), where:

• P is the prover and initially holds (x, y) ∈ R as the input.

• V is the verifier who initially holds the statement y as the input and outputs accept or reject
at the end of the protocol.

• P and V conduct the following interactions:

– P generates a commitment t and sends it to V ;

– On receiving t from P , V generates a challenge c and returns it back to P ;

– On receiving c from V , P generates a response z based on c and (x, y) and sends z to V ;

– Upon receiving z from P , V outputs either accept or reject based on the statement y and
the transcript (t, c, z).

The Sigma protocol also has the same properties as Schnorr’s identification protocols described
as the following:

1. Completeness: If P and V execute the protocol honestly, the verifier always outputs accept.

2. Special Soundness: Given two valid transcripts (t, c1, z1) and (t, c2, z2), the verifier can
extract the witness x.

3. Honest Verifier Zero-Knowledge: The verifier can efficiently generate valid transcripts
for y ∈ Y without knowing witness x ∈ X .

2.2 Cases of Sigma Protocol

Sigma protocol can be applied to a lot of applications to prove binary relations, such as DDH
relation RDDH = {(β, (u, v, w)) ∈ Zp × G3

p : v = gβ ∧ w = uβ}, Pederson commitment [Ped91]

relation Rcom = {((α, β), u) ∈ Z2
p × Gp : u = gα · hβ}. For a specific application, the construction

of the Schnorr identification protocol relies on the proof of a discrete logarithm relation, which is
described as the following.

Rsch = {(α, u) ∈ Zp ×Gp : u = gα}

We propose a concrete Sigma protocol construction for Pederson’s commitment relation in the
following: assume that Gp is a cyclic group with a prime order p and g, h ∈ Gp are generators. The
prover holds u ∈ Gp (statement) and two secret values α, β (witness) that u = gα · hβ. Okamoto’s
protocol gives a specific construction of Sigma protocol for Rcom, allowing the prover to show that
it knows the opening of the commitment but does not expose the secret values to the verifier. The
relation that the Okamoto protocol proves is as follows:

8

P ((α, β), u) V (u)

Rcom =
{
((α, β), u) ∈ Zp ×Gp : u = gα · hβ

}

αt, βt ←$ Zp, ut = gαt · hβt

ut

c←$ Zp
c

αz = αt + α× c

αz, βz

gαz · hβt = ut · uc ?

βz = βt + β × c

Figure 5: Okamoto’s Protocol.

Rcom = {((α, β), u) ∈ Z2
p ×Gp : u = gα · hβ}

Here, we give a description of Okamoto’s Protocol, which is illustrated in Figure 2.2.

Definition 2.4 (Okamoto’s Protocol). The prover and the verifier interact as the following
operations to prove relation Rcom with the statement u.

• P randomly chooses two values αt, βt ←$ Zp, computes ut = gαt · hβt, and then sends ut to
the verifier.

• On receiving uu, V randomly chooses a challenge c←$ Zp and returns it to P .

• On receiving c, P computes αz = αt + α · c, βz = βt + β · c, and return αz and βz to V .

• V checks whether gαz · hβz = ut · uc. If true, V outputs accept. Otherwise, V outputs reject.

Okamoto’s protocol satisfies the three properties described in the Sigma protocol.

• Completeness: The completeness is trivial, because gαz ·hβz = gαt+α·c ·hβt+β·c = (gαt ·hβt) ·
(gα · hβ)c = ut · uc. The above equation holds if P and V honestly execute the protocol.

• Special Soundness: If the verifier obtains two valid transcripts (ut, c, αz, βz) and (ut, c
′, α′

z, β
′
z)

for the same statement u, it can extract the witness by calculating α = (αz−α′
z)/(c− c′), β =

(βz − β′
z)/(c− c′).

• Honest Verifier Zero-Knowledge: The simulator Sim(u) can generate the message in a
reverse manner: (1) Randomly choose αz, βz ←$ Zp; (2) Randomly choose c ←$ Zp; (3)
Computes ut = gαz · hβz/uc. The above-simulated transcript can also pass the verification.

9

2.3 Combination of Sigma Protocols

Sometimes, we need to prove complicated relations for specific scenarios that consist of a series
of basic relations. The combination of relations can be divided into two categories. (1) AND
composition requires the prover to prove that it knows the witnesses for all involved statements.
While in the (2) OR composition, the prover only needs to prove that it knows a certain witness
for one of the relations.

2.3.1 AND Composition

Assume that there is a discrete log relation RDL = {(α, u) ∈ Zp × Gp : u = gα}. Then the
combination of two discrete log relation can be described by R1

DL ∧ R2
DL = {(α1, α2;u1, u2) ∈

Z2
p×G2

p : u1 = gα1 ∧u2 = gα2}. Here, we give a definition of AND composition for binary relations.

Definition 2.5 (AND Composition). Given a set of binary relations {Ri ⊆ Xi×Yi}i∈[n]. Then
a new relation RAND can be described as follows:

RAND = {((x1, . . . , xn), (y1, . . . , yn)) ∈ (X1×· · ·×Xn)×(Y1×· · ·×Yn) : (x1, y1) ∈ R1∧· · ·∧(xn, yn) ∈ Rn}

A naive method is used to construct the Sigma protocol for the AND composition relation for
each atomic relation. The following method summarizes the naive construction of Sigma protocol
for R1

DL ∧R2
DL = {(x1, x2;h1, h2) ∈ Z2

p ×G2
p : h1 = gx1 ∧ h2 = gx2}.

• For i ∈ {1, 2}, P and V parallelly or sequentially execute the following protocol.

– P randomly chooses ui ←$ Zp, computes ai = gui , and sends ai to V ;

– V randomly chooses ci ←$ Zp and returns it to P ;

– P computes ri = ui + ci × xi, and returns ri to P ;

– V checks whether gri = ai ·hcii . It outputs accept if it holds. Otherwise, it outputs reject.

The above method requires several challenges from V for each relation. A more efficient con-
struction, such as the following, only needs one challenge for the composite relation, illustrated in
Figure 6.

• P randomly chooses u1, u2 ←$ Zp, computes a1 = gu1 , a2 = gu2 , and sends a1, a2 to V ;

• V randomly chooses c←$ Zp and returns it to P ;

• P computes r1 = u1 + c× x1, r2 = u2 + c× x2, and returns r1, r2 to P ;

• V checks whether gr1 = a1 · hc1 and gr2 = a2 · hc2. It outputs accept if it holds. Otherwise, it
outputs reject.

2.3.2 OR Composition

Definition 2.6 (OR Composition). Given a set of binary relations {Ri ⊆ Xi ×Yi}i∈[n]. Then a
new relation ROR can be described as follows:

ROR = {((x1, . . . , xn), (y1, . . . , yn)) ∈ (X1×· · ·×Xn)×(Y1×· · ·×Yn) : (x1, y1) ∈ R1∨· · ·∨(xn, yn) ∈ Rn}

In the case where both R1
DL and R2

DL are DL relation, then the OR composition relation is
R1

DL ∨R2
DL = {(x1, x2;h1, h2) ∈ Z2

p ×G2
p : h1 = gx1 ∨ h2 = gx2}.

The specific Sigma protocol is constructed to prove the above relation, illustrated in Figure 7.

10

R1
DL ∧R2

DL = {((x1, x2;h1, h2) ∈ Z2
p ×G2

p : h1 = gx1 ∧ h2 = gx2

P (x1, x2;h1, h2) V (h1, h2)

u1, u2 ←$ Zp

a1 = gu1 , a2 = gu2

a1, a2

c←$ Zp
c

r1 = u1 + x1 × c

r2 = u2 + x2 × c
r1, r2

gr1 = a1 · hc1 ?

gr2 = a2 · hc2 ?

Figure 6: Protocol for AND Composition (for DL Relations).

R1
DL ∨R2

DL = {((x1, x2;h1, h2) ∈ Z2
p ×G2

p : h1 = gx1 ∨ h2 = gx2

P (x2 = Loggh2;h1, h2) V (h1, h2)

c1, r1, u2 ←$ Zp

a1 = gr1 · h−c1
1 , a2 = gu2

a1, a2

c←$ Zp
c

c2 = c− c1

r2 = u2 + x2 × c2
c1, c2, r1, r2

gr1 = a1 · hc11 ?

gr2 = a2 · hc22 ?

c = c1 + c2 ?

Figure 7: Protocol for OR Composition (for DL Relations).

11

• P randomly chooses c1, r1, u2 ←$ Zp, computes a1 = gr1 · h−c1
1 , a2 = gu2 , and sends a1, a2 to

V ;

• V randomly chooses c←$ Zp and returns it to P ;

• P computes c2 = c− c1, r2 = u2 + c2 × x2, and sends c1, c2, r1, r2 to V ;

• V checks whether c1 + c2 = c, gr1 = a1 · hc11 , gr2 = a2 · hc22 . If all equations hold, V outputs
accept. Otherwise, it outputs reject.

The trick for constructing the Sigma protocol of OR composition contains two points. Firstly, for
statements without knowing witnesses, the prover acts like a simulator to simulate the transcripts
for corresponding sub-relations. Secondly, P generates a real transcript for the statement with the
known witness.

For AND-OR composition of relations such as (R1∨R2)∧ (R3∨R4) and (R1∧R2)∨ (R3∧R4),
the Sigma protocol design can be seen as a recursive progress. We could regard the composition
relation as the AND or OR composition of two sub-relations and design an abstract protocol for
these two sub-relations. Then, we could divide the sub-relations into smaller ones and design Sigma
protocols. Combining these allows us to obtain the final protocol to prove the complex composition
relation.

2.3.3 Electronic Voting

In the scenario of e-voting, each voter vi ∈ V provides an ElGamal cipher text ci = E .enc(xi, pk), xi ∈
{0, 1} to hide the voting information. The final result can be obtained by computing xsum =
E .dec(

∏
i∈[|V |] ci, sk). To prevent the malicious voter that encrypts messages not in {0, 1}, the voter

also needs to provide proof to show that the cipher text is constructed correctly.
Let pk = u and the cipher text of vi is v = gβ, e = uβ · gb. The relation for the statement that

(v, e) is a cipher text of 0 or 1 can be as the following:

RV = {((b, β), (u, v, e)) : v = gβ ∧ e = uβ · gb ∧ b ∈ {0, 1}}.

The above relation can be described differently: (g, u, v, e) or (g, u, v, e/g) is a DDH tuple. The
above relation can be transformed into the OR composition relation of two DDH relations:

R1
DDH ∨R2

DDH = {(β;u, v, e) ∈ Zp ×G3
p : v = gβ ∧ (e = vβ ∨ e/g = vβ)}.

Constructing a Sigma protocol for the above OR composition relation can ensure the cipher text
is correctly encrypted. The protocol is illustrated in Figure 8.

3 Zero-Knowledge Proofs

3.1 Zero-Knowledge Proof System

Zero-knowledge proof is an extension of Sigma protocols which should be held for any verifier.
The interactive of zero-knowledge proof is not necessary of 3-pass and soundness is not necessary
of proof-of-knowledge. For language L, zero-knowledge proof systems have the following three
properties:

• Correctness(Completeness): If y ∈ L, both P and V execute the protocol honestly, V must
output accept at the end of the interaction.

12

R1
DDH ∨R2

DDH = {((β;u, v, e) ∈ Zp ×G3
p : v = gβ ∧

(
e = uβ ∨ e/g = uβ

)

P
(
β;u, v, e = uβ · g

)
V (u, v, e)

c1, r1, r2 ←$ Zp, a1 = gr1

a1, a2, a3, a4

c←$ Zp

c

c1, c2, z1, z2

gz1 = a1 · vc1 ?c = c1 + c2 ?

c2 = c− c1

z2 = c2 × β + r2

uz1 = a2 · ec1 ? gz2 = a3 · vc2 ?

uz2 = a4 · (e/g)c2 ?

z1 = c1 × β + r1, a2 = uz1/ec1

a3 = gr2 , a4 = ur2

Figure 8: Protocol for e-voting.

13

• Soundness: If y /∈ L, for any computational-bounded prover P , V outputs accept with negli-
gible probability.

• Zero-knowledge: For any V , without knowing the witness x, we can simulate(generate) the
valid transaction efficiently for any statement y ∈ L.

Given an NP language L, a prover P with input (x, y) ∈ relationR wants to prove y ∈ L. The
above three properties of zero-knowledge proof imply the following propositions for NP language:

• if y ∈ L, verifier V will output accept with overwhelming probability.

• if y /∈ L, for any probabilistic polynomial-time(PPT) prover, verifier V will output accept with
negligible probability, which means reject it.

• Zero-knowledge: Any verifier V could learn nothing about the witness x ∈ X during the
interaction.

According to O Goldreich, S Micali and A Wigderson [GMW86], Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. we have the following
theorem:

Theorem 3.1. If there exists a secure probabilistic encryption, then every language in NP has
a zero-knowledge interactive proof system in which the prover is a probabilistic polynomial-time
machine that gets an NP proof as an auxiliary input.

3.2 ZKP for 3-colorable Graphs

To prove that ∃ input x such that C(x) = y, where C is any polynomial size circuit. The circuit
can be a polynomial function or an algorithm. There is a famous example of ZKP for 3-colorable
Graphs to help understanding:

Let G = (V,E) be graphs on n vertices and define V = {v1, . . . , vn} be the set of vertices, and
E = {ei,j : ∃edgeei,jbetweenvi, vj} be the set of edges. We say that a graph G is 3-colorable(or G ∈
3COL) if there is a function c : V → {R,G,B} such that for every edge (vi, vj) ∈ E, c(vi) ̸= c(vj).

The protocol for 3COL actually implies a protocol for all languages in NP, since 3COL is NP-
complete, which can be used for the prover to convert their proof for any NP into a proof for the
3COL protocol. Therefore, we could design a commitment to generate a proof of 3COL problem.

We should define the commitment first. A commitment Com is a 3-tuple algorithm(Setup,
Commit, Verify):

• Setup: Generate public parameters pp.

• Commit(m): Compute a commitment c to m with its opening d, and output c.

• Verify(c,m,d): indicate the validation of (m, d) with respect to commitment c

A commitment could be statistical hiding and computational binding, or computational hiding
and statistical hiding.

• Hiding: For any m,m′ ∈Mcom, their commitments are statistical indistinguisgable.

• Binding: No probability polynomial time(PPT) adversary could open a commitment c on
two different messages.

14

v1
v2

v3

v4

v5

v6Prover Verifier

3.Send open colors for endpoint

1.Randomly permute coloring &
send in Commitment 2. Pick random edge

4. Accept if colors different

Commit Colors

(1,4)

(v1, c1), (v4, c4)

Figure 9: The ZKP commitment for 3-colorable Graphs.

Figure 10: The relevant comparison

The ZKP commitment for 3-colorable Graphs like Figure 9 It is easy to check the completeness
and soundness, so we just discuss the zero-knowledge properties for the honest verifier. If the prover
colors every point of the graph for the verifier to check for many times, the verifier can learn the
knowledge about 3COL graph. Thus, the zero-knowledge properties are implied by the hiding of
the commit. The prover only selects two points to color with different colors.

3.3 Non-Interactive Zero-Knowledge (NIZK)

Non-interactive is better than interactive(latency) and usable for signature or e-voting situations.
Actually, NIZK only exists for L in BPP, which is not interesting than NP. And any zero-knowledge
systems based on the Sigma protocol could be converted into a non-interactive proof system using
the Fiat-Shamir transform. The basic idea is not relying on the verifier to randomly generate the
challenges while taking advantage of a hash functionH as a random oracle. The following introduced
Fiat-Shamir transform is a technique that can convert a Sigma protocol into a non-interactive proof
protocol [FS86].

15

3.4 Succinct Non-Interactive Arguments of Knowledge (SNARKs)

It is better if we have a very small (Succinct) proof and the verification of the proof is efficient.
SNARK is such a zero-knowledge technique that can be used in arbitrary logic and circuits, and yield
succinct proofs. The SNARKs can be used in verifiable outsourcing computation and blockchain.
Actually, there are lots kinds of SNARK like zk-STARK. The relevant comparison is as Figure 10,
shows the differences of SNARKs(groth16), STARKs and Bulletproofs.

References

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Crypto, volume 86, pages 186–194. Springer, 1986.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design. In 27th Annual Sympo-
sium on Foundations of Computer Science (FCS 1986), pages 174–187. IEEE Computer
Society, 1986.

[Ped91] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In Annual international cryptology conference, pages 129–140. Springer,
1991.

[QQQ+89] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël Quisquater,
Louis Guillou, Marie Annick Guillou, Gäıd Guillou, Anna Guillou, Gwenolé Guillou, and
Soazig Guillou. How to explain zero-knowledge protocols to your children. In Conference
on the Theory and Application of Cryptology, pages 628–631. Springer, 1989.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Advances
in Cryptology—CRYPTO’89 Proceedings 9, pages 239–252. Springer, 1990.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of cryptol-
ogy, 4:161–174, 1991.

16

	Identification Protocols and Signatures
	Identification/Authentication Paradigm
	A toy example: Ali Baba Cave
	Schnorr's Identification Protocol
	Schnorr Signature
	The Identification for Decisional Diffie-Hellman

	Sigma Protocol
	Definition of Sigma Protocol
	Cases of Sigma Protocol
	Combination of Sigma Protocols
	AND Composition
	OR Composition
	Electronic Voting

	Zero-Knowledge Proofs
	Zero-Knowledge Proof System
	ZKP for 3-colorable Graphs
	Non-Interactive Zero-Knowledge (NIZK)
	Succinct Non-Interactive Arguments of Knowledge (SNARKs)

