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Summary
In this lecture, post-quantum cryptography and homomorphic encryption are discussed.
First, a definition of post-quantum cryptography is given, and reasons why it is necessary
are described, followed by existing solutions and NIST’s status on post-quantum cryptog-
raphy standardisation. Then an overview of fully homomorphic and partially homomorphic
encryption is provided, followed by a discussion on bootstrapping and four generations of
fully homomorphic encryption.

1 Post-Quantum Cryptography
Cryptosystems are essential for securing communications between two parties and are widely
in use today. Even though they are known to be computationally secure, quantum computers
will pose a significant threat to the security of existing cryptosystems once they are available,
which, with a funding of 1 billion USD, could happen in the next two decades [MP22].
Therefore, it is necessary to develop new cryptographic algorithms that are resistant to
quantum attacks. This is known as post-quantum cryptography.

1.1 A Big Picture of Cryptographic Algorithms

When a client sends a request to a server, they agree on cryptographic algorithms and ex-
change security parameters over TLS (Transport Layer Security) to ensure secure communica-
tion. This is done to ensure the CIA triad, i.e., confidentiality, integrity and authentication.
Confidentiality is needed to make sure adversaries cannot eavesdrop on the messages ex-
changed between the client and the server. Integrity is needed to prevent adversaries from
changing the original message. Authentication is needed to verify the identity of the sender.
Based on Kerckhoff’s principle, all cryptographic algorithms are public, only their keys are
private.

Suppose A wants to send a message m to B. First, A and B will use a key exchange
mechanism (this will be discussed in more detail later) to share symmetric keys kenc (encryp-
tion key) and kauth (authentication key). Then A will use a symmetric encryption algorithm,
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e.g., AES-128 (Advanced Encryption Standard) [DR02], to encrypt m with kenc to generate a
ciphertext c as c← Enckenc(m). A will also generate a MAC (message authentication code)
tag using a MAC tag generation algorithm Mac on c with an authentication key kauth to prove
it has access to the key and that c was indeed sent from A as t←Mackauth(H(c)), where H
is a collision-resistant hash function. Hash functions are needed for domain extension, i.e.,
to allow generating MACs on messages of arbitrary length. Note that the hash function was
applied on the ciphertext c, which is known as the "encrypt-then-authenticate" approach. Ac-
cording to theorem 5.7 in [KL20], MAC schemes based on the "encrypt-then-authenticate"
approach are secure. When B receives a ciphertext and its tag c′ and t′, respectively, B
needs to make sure that it originated from A, so B calculates a MAC tag t′ ← Mackauth(c

′)
for the received ciphertext c′ and runs a MAC verification algorithm V rfykauth(c

′, t′). If
V rfykauth(c

′, t′) = 1, then t = t′ and c = c′, so MAC tag verification is successful. After
verification, B decrypts c′ using kenc to obtain the original message m′ = Deckenc(c

′) = m.
Symmetric encryption ensures confidentiality, while MACs ensure message integrity and au-
thentication because forging a modified message m′ ̸= m such that its tag t′ = t is computa-
tionally hard [KL20].

A major issue in symmetric encryption is how to securely share encryption and authen-
tication keys. Public-key encryption schemes have computationally secure key exchange
mechanisms and also support encryption and message authentication, but because they are
more computationally expensive, they are used for authenticating public security parameters
and key exchange, while symmetric encryption is used for encrypting the original message
after the secret key is agreed on using public-key cryptography [KL20]. In public-key cryp-
tography, each party has two keys: a public key and a private key. Anyone can get hold of
public keys and use them to encrypt messages. Anyone can encrypt a message m using A′s
public key pkA and an asymmetric encryption scheme like RSA (Rivest-Shamir-Adleman)
to obtain the ciphertext as c ← EncpkA(m), but only A can recover the original message
using its private key m← DecskA(c). Recovering the private key based on the public key is
computationally hard under the discrete logarithm assumption, which will be discussed later.

Before A and B can communicate, A and B exchange shared keys for symmetric encryp-
tion and message authentication. One way to do this is to use public-key encryption, e.g.,
padded RSA or ElGamal-based encryption [Elg85]. If A wants to communicate with B, A
picks a symmetric random key, encrypts it with B’s public key and sends the encrypted key to
B. B recovers the shared key after verifying it originated from A. Another way for A and B
to obtain shared keys is to participate in authenticated key exchange, e.g., the Diffie-Hellman
key exchange [Hel76].

When sharing public security parameters such as public keys in public-key cryptography,
it is important to verify their integrity and the identity of the sender. This can be achieved
using digital signatures, which are analogous to MAC tags in private-key cryptography. If
A wants to associate its identity with a message m, it signs it with its secret key skA to
generate its signature as σ ← SignskA(H(m)), where H is a collision-resistant hash function.
Applying a hash function on the message ensures it is of fixed length, which reduces the cost
of running a digital signature algorithm. According to theorem 13.4 in [KL20], signature
schemes that are secure for messages of length l and use collision-resistant hash functions
before signing messages are secure. Then anyone can verify that σ is the signature of m
using a digital signature verification algorithm V rfyvkA(H(m)), where H is a hash function
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and vkA is the verification key for A’s signatures, which is public. If V rfyvkA(H(m)) = 1,
then digital signature verification is successful, so the receiver can decrypt the ciphertext and
recover the original message using its secret key for decryption, which must be distinct from
the secret key used for signature generation [KL20]. Digital signatures are similar to MACs,
but there are three important distinctions:

• A digital signature can be verified by anyone, whereas a MAC tag can only be verified
by parties sharing kauth.

• A digital signature can only be generated by one party, whereas a MAC tag can be
generated by either party sharing kauth.

• Digital signatures ensure non-repudiation, meaning that once A signs a message m, it
cannot deny having signed it because its verification key is tied to its secret key. A
MAC tag, however, could have been generated by either party, so it is hard to attribute
authorship of a message to any party.

An important issue with public-key cryptography is how to associate public keys with
their owners and protect their integrity. This can be done using trusted third-party certificate
authorities (CAs). If B wants to prove its identity to A, it sends its certificate CertB to A
signed by a trusted third party T with its private key skT . Then A finds the public key pkT
of T in its local storage (browsers come hardwired with the public keys of trusted authorities)
and verifies CertB. If certificate verification is successful, A extracts B’s public key from the
certificate and can use it for encryption, for example.

As discussed previously, the basic goal of cryptography is to ensure message privacy,
message integrity and message authentication. Message privacy is ensured by encryption,
and integrity and authentication are ensured by digital signatures or MACs. There are three
levels of security for message privacy:

• IND-eva (indistinguishability in the presence of an eavesdropper): given two different
messages and the ciphertext of one of the messages, the adversary cannot tell which
message the ciphertext belongs to (definition 3.8 in [KL20]

• IND-CPA (indistinguishability in chosen-plaintext attacks): given oracle access to the
encryption algorithm of an encryption scheme, meaning even if the adversary is allowed
to choose any plaintext it wants, it still cannot match a ciphertext to its original message
(definition 3.21 in [KL20]

• IND-CCA (indistinguishability in chosen-ciphertext attacks): given oracle access to the
encryption algorithm and the decryption algorithm of an encryption scheme, meaning
even if the adversary is allowed to choose any plaintext it wants and can decrypt any
ciphertext that it eavesdrops by but did not request itself, it still cannot match a
ciphertext to its original message (definition 5.1 in [KL20]).

All three apply to private-key encryption schemes, whereas only IND-CPA and IND-
CCA security are applicable to public-key encryption schemes. The security of message
authentication schemes, which ensure message integrity and authentication, is defined by
their unforgeability. According to definition 4.2 in [KL20], a MAC scheme is secure if the
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likelihood of an adversary forging a tag for a message of its choice given oracle access to
the Mac algorithm of the scheme is negligible. This is referred to as uf-CMA (existentially
unforgeable under an adaptive chosen-message attack) security. A similar definition applies
to digital signatures (definition 13.2 in [KL20]). According to definition 5.3 in [KL20], a
private-key encryption scheme that is IND-CCA-secure and is unforgeable is called an au-
thenticated encryption scheme. As for the security of hash functions, it is defined by their
collision resistance (definition 6.2 in [KL20]), which means that it is hard to find a pair of
messages (m,m′) such that H(m) = H(m′), where H is a hash function. This is important
because it means that, given the digest of a message, the adversary should not be able to
recover the original message in MAC and digital signature schemes. There are two types of
hash functions: keyed and unkeyed. Keyed hash functions accept a random key as a param-
eter, whereas unkeyed hash functions do not. Keyed hash functions are stronger since they
have no hardcoded collisions, but unkeyed functions are used in practice because they are
computationally collision-resistant [KL20].

Different types of public-key and private-key cryptographic algorithms are used in prac-
tice. Symmetric-key encryption algorithms can either be based on block ciphers or stream
ciphers. Block ciphers accept messages of fixed length, whereas stream ciphers can accept
inputs of arbitrary length. Block-cipher-based symmetric-key encryption algorithms used in
practice include AES-CBC (AES with Cipher-Block Chaining mode) and AES-CTR (AES
with Counter block cipher mode). Symmetric-key-based message authentication schemes
used in practice include CBC-MAC (cipher block chaining message authentication code)
and HMAC (hash-based message authentication code). Examples of authenticated encryp-
tion schemes used in practice are AES-GCM (AES with Galois/Counter Mode), AES-CCM
(AES with Counter with Cipher Block Chaining-Message Authentication Code) and AES-
OCB (AES with offset codebook mode). As for public-key cryptography, hashed RSA-
3072 [RSA78a], Schnorr signature scheme and ECDSA (Elliptic Curve Digital Signature
Algorithm) [JMV01] are used for digital signatures and passed RSA and ElGamal-based en-
cryption schemes are used for public-key encryption. Key exchange mechanisms based on
Diffie-Hellman key exchange can be used used to share symmetric keys for encryption. When
it comes to practical constructions of hash functions, examples include SHA2-256 [Bry12],
SHA2-512, SHA3-256, etc.

Cryptographic algorithms are now widely used for secure communications over the Inter-
net in multiple protocols. For example, the TLS protocol is used for encrypted communication
over the HTTPS protocol. The SSH (Secure Socket Shell) protocol allows users to remotely
work on another computer in a secure manner. IPSec (Internet Protocol Security) is similar
to TLS but operates over an Internet Protocol network, i.e., it is positioned one layer lower
in the OSI hierarchy than TLS. Thanks to these algorithms, people can safely perform fi-
nancial transactions on the Internet, access sensitive data, send text messages, etc. Software
companies also use digital signatures to authenticate their software when it is downloaded
by users.

The security of cryptographic algorithms depends on the hardness of the problems they
are based on. Algorithms used in practice are not perfectly secure, they are computationally
hard to break, meaning their security is predicated on the computational resources of classical
computers. For example, RSA digital signature schemes and RSA encryption schemes are
based on the assumption that the following problems are hard:



COMP 6712 Advanced Security and Privacy 2022/23

• integer factorisation;

• the RSA problem, which states that, given Z∗
N , which is a group consisting of integers

co-prime to N of order ϕ(N), where N is the product of two large primes p and q, e
is an integer that is co-prime to ϕ(N), and ϕ is the Euler totient function, recovering
x ∈ Z∗

N from y, where y = xe mod N , is computationally hard.

Diffie-Hellman key exchange is predicated on the hardness of:

• the discrete logarithm (DL) problem, which states that, given gx, where g is a generator
of a finite cyclic prime-order group G, and x is an integer, recovering x from gx is hard;

• the decisional Diffie-Hellman (DDH) problem, which states that distinguishing between
gab and gz given ga, gb, gz is hard, where ga, gb, gz are chosen uniformly at random and
g is a generator of a finite cyclic prime-order group G.

Elliptic-curve-based schemes are also based on the assumption that DL and DDH problems
are hard. As for the security of symmetric-key schemes, it is based on the security of pseu-
dorandom functions and the collision resistance of the hash functions they use.

1.2 Quantum Threats

Computational security assumes that adversarial attacks are carried out on classical com-
puters, i.e., it does not take quantum computers into account. However, quantum computers
are expected to pose a significant threat to the security of existing cryptosystems since they
can become powerful enough to run exponentially more operations than classical computers.
In classical computers, information is represented in terms of bits, where a bit is either 0
or 1. The equivalent of a bit in quantum computing is called a qubit. The computational
advantage of quantum computers stems from the fact that, unlike a classical bit, a qubit
can represent 0, 1 or any proportion of 0 and 1 in between, meaning that it can work with
multiple states simultaneously. The computational supremacy of quantum computing has
already been demonstrated by Google in 2019 [AAB+19]. Their research shows that a quan-
tum computer working with 53 qubits can take 200 seconds to solve a task that would have
taken a classical computer 10,000 years. However, quantum computers are still in develop-
ment and have not been applied on real problems since they have a number of issues such
as the inability to correct errors and allow qubits to interact [Bal21]. Nevertheless, quantum
computers are expected to become much more powerful in a few decades, and this section will
discuss in more detail how this computational power can jeopardise the security of existing
cryptosystems.

1.2.1 Shor’s Algorithm

One of the most devastating algorithms for existing cryptosystems has been proposed by
Shor [Sho94]. The author designed Las Vegas algorithms for finding discrete logarithms and
factors of large numbers in polynomial time on quantum computers, which has devastating
implications for public-key cryptosystems based on these problems such as RSA, ECC (elliptic
curve cryptography), FFC (finite field cryptography) and Diffie-Hellman key exchange.
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Shor’s algorithm factors integers by solving the period-finding problem using Fast Fourier
Transform [ST21]. The period-finding problem lies in finding the smallest integer r ∈ [0, N ]
such that ar mod N = 1, where N and a are positive integers that share no common factors,
and a ∈ [0, N − 1]. In other words, r is the period of a function f : e → ae mod N . Shor’s
algorithm can solve this problem in O(d3) time, where d = log2N , i.e., d is the number of
digits in N . It computes a quantum Fourier transform to approximate the superposition of
periods of f and measures it to obtain a random period [BL17]. If one can find the order
r of a cyclic group < a >, where a ∈ ZN is a generator of Z∗

N , according to proposition
9.55 in [KL20], r|ϕ(N), so one can reveal the prime factors of N based on ϕ(N) because
ϕ(N) = NΠp|N(1− 1

p
). In the case of RSA, if N = pq, then ϕ(N) = (p − 1)(q − 1). If one

finds the order r of a cyclic group with one generator a ∈ ZN and finds the order r′ of a
cyclic group with another generator a′, one can recover another factor of (p− 1)(q − 1) with
high probability [BL17]. Knowing the factors of N enables the adversary to find the secret
key d of any public key e since [ed mod ϕ(N)] = 1, so the adversary can recover d by finding
the multiplicative inverse of e with respect to ϕ(N).

According to Bernstein and Lange [BL17], the period-finding routine in Shor’s algorithm
can also be used to find discrete logarithms. Let g be a generator of a group G of prime
order q. Given h = gk ∈ G, Shor’s algorithm can be used to recover k. To demonstrate
this, suppose there is a periodic function f : (x1, x2) → gx1hx2 mod q, where h = gk mod q.
Then Shor’s algorithm can be used to find the period of f , i.e., (ω1, ω2) such that f(x1, x2) =
f(x1 + ω1, x2 + ω2). Then gω1hω2 = 1 = gω1gkω2 = gω1+kω2 . Therefore, kω2 ≡ −ω1 mod q,
meaning that k can be recovered as k = −ω1/ω2 mod q by finding a non-zero pair (ω1, ω2).
If multiplication modulus q is replaced with point addition on an elliptic curve modulus q,
Shor’s algorithm jeopardises elliptic curve cryptography as well. In general, Shor’s algorithm
compromises the security of cryptosystems that rely on the hardness of integer factorisation
and discrete logarithm problems, i.e., RSA, ECC, Diffie-Hellman key exchange, FFC, etc., i.e.,
public-key cryptographic algorithms. Since symmetric-key cryptography is not predicated
on these problems, Shor’s algorithm does not pose a threat to it. Bernstein and Lange
state that it will take billions of operations on quantum computers to break RSA and ECC.
Quantum computing might not be able to meet these computational requirements in the
future, but there is no guarantee that quantum computers will not become powerful enough
to compromise the security of existing systems, so quantum-computing-resistant algorithms
are required.

1.2.2 Grover’s Algorithm

Another quantum threat has been described by Grover [Gro96], who showed that database
search can be performed in O(

√
N) time on quantum computers, where N is the size of the

database. This may not seem problematic since database search time complexity can be
improved to O(logN) if the database is sorted in O(N logN) time, but what if sorting is not
possible? According to [BL17], Grover’s algorithm can be better described as searching for
the roots of a function f , i.e., finding x such that f(x) = 0. Grover’s algorithm only requires
O(
√
N) calculations of f on superpositions of inputs and has been shown by Grover to be

within a constant factor of the optimal quantum algorithm for database search. Grover’s
algorithm poses a threat to symmetric-key cryptography. This can be demonstrated with
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AES. Suppose there is a ciphertext c = AESk(p1, p2) for some plaintexts p1 and p2. Then
Grover’s algorithm can reduce the number of operations needed to find a k that maps p1 and
p2 to c from O(N) to O(

√
N)), meaning that, if the key k is 128 bits in length, for example,

then only
√
2128 = 264 operations are required to find the key. This problem extends to

other symmetric-key encryption algorithms like triple DES (Data Encryption Algorithm)
that are parameterised by secret keys. To address this problem, the key size should simply
be doubled [Flu17] to bring the complexity of key search from O(2N/2) to O(2(N/2)·2) = O(2N).
Information-theoretic MACs like GMAC (Galois Message Authentication Code) [MV04] and
Poly1305 [Ber05] assume the adversary has unlimited computational power, so they are
secure against quantum computing attacks [BL17]. However, hash functions must also use
longer outputs because, given a hash h of a message m, searching for m will take O(

√
|h|)

operations [Pre22] with Grover’s algorithm.
In summary, it is evident that public-key cryptography is under significant threat from

Shor’s and Grover’s algorithms, whereas private-key cryptography seems to only be threat-
ened by Grover’s algorithm, but this issue can be addressed by simply doubling the key size,
as discussed previously. Grover showed that his algorithm is optimal, so doubling the key
size should be sufficient to ensure quantum security. However, this makes these schemes more
computationally expensive. This change is rarely noticeable in symmetric-key cryptography
but is more significant in public-key cryptography [BL17]. To address the quantum threat
of Shor’s algorithm, on the other hand, requires replacing existing cryptographic algorithms
with new ones that are quantum-safe.

1.3 Post-Quantum Cryptography and Quantum Key Distribution

Shor’s and Grover’s algorithms motivated researchers to design quantum-safe cryptosystems.
There are two approaches to do this. One way is to design cryptosystems for quantum
computers and build physical quantum key distribution (QKD) channels for symmetric-key
cryptography, assuming devices at both ends are quantum computers [MNR+20].

Definition 1.1 (Quantum Key Distribution). Quantum key distribution is defined as
the act of producing and sharing symmetric cryptographic keys between two remote quantum
machines based on quantum physics [MNR+20].

According to [MNR+20], quantum key agreement is implemented at the lowest level of the
QKD network architecture and will be integrated into optical communications. However, the
main obstacle in QKD development is that the key rate is currently restricted and depends on
the length of the channel. QKD channels would enable a continuous exchange of keys between
users, which would allow for larger key sizes and, therefore, stronger security. However,
mechanisms on how to allow users to establish identical keys from a continuous stream would
have to be designed.

Aside from quantum cryptography, another option is to design cryptographic schemes that
cannot be broken with quantum computers. This is referred to as post-quantum cryptography
and will be the focus of this part of the lecture.

Definition 1.2 (Post-Quantum Cryptography). Post-quantum cryptography refers to
cryptosystems resistant to attacks by quantum computers [MR22].
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The security of existing cryptosystems is predicated on the hardness of computation-
ally hard problems such as integer factorisation and finding discrete logarithms. Similarly,
quantum-safe cryptosystems are based on quantum hard problems. Examples of potential
quantum hard problems are described in section 1.6.

1.4 Why Post-Quantum Cryptography?

In 2016, The National Institute of Standards and Technology (NIST) initiated a standard-
isation process of post-quantum cryptography, which is expected to be finalised by 2024.
Even though currently quantum computers are not powerful enough to break existing cryp-
tosystems [MR22], there are significant reasons to start developing quantum-secure cryp-
tosystems. First, active developments are being made in making quantum computers more
powerful. According to NIST’s report on post-quantum cryptography [CCJ+16], quantum
computers will be able to break 2000-bit RSA in a few hours by 2030. IBM has been making
strides in increasing the computational power of their quantum chips and has recently made
a breakthrough by building a 433-qubit quantum computer [Bal21]. Boudot et al. [BGG+20]
recently demonstrated the ability to factorise a 795-bit RSA number and solve discrete log-
arithm problems of the same size. These examples demonstrate that the performance of
quantum computers will only improve in the future, rendering existing public-key cryptosys-
tems insecure. Another reason why measures must be taken to address quantum threats now
is that there might be adversaries that have been collecting encrypted data for years and are
waiting to decrypt it with quantum computers [MR22].

1.5 The Status of NIST’s Project on Post-Quantum Cryptography

NIST launched the standardisation process of post-quantum cryptography in 2016 in the
form of a public competition, which accepted public-key encryption schemes, digital signa-
ture schemes and key exchange mechanisms [MR22]. Three rounds of the competition have
been completed so far. The first round received 86 submissions, out of which 69 met the
minimum requirements. Most submissions were based on lattices and error-correcting codes.
After conducting collaborative security analysis, in 2019 [AAAS+19], NIST announced that
26 out of 69 systems would proceed to the second round of the competition for evalua-
tion. In 2020 [MAA+20], seven finalists were identified and proceeded to the third stage.
In 2022 [AAC+22], it was announced that CRYSTALS-Kyber would be standardised as a
post-quantum public-key encryption algorithm and a key exchange algorithm. As for digital
signatures, CRYSTALS–Dilithium, FALCON and SPHINCS+ were selected for standardi-
sation. Four more key exchange mechanisms were chosen to proceed to the fourth round.
NIST continues its call for proposals to diversify its portfolio of post-quantum cryptographic
algorithms but expects to publish the final standard by 2024. Kyber is based on module
learning with errors, and Dilithium is a lattice-based digital signature scheme.

1.6 Candidates for Post-Quantum Cryptography

As mentioned previously, post-quantum cryptography is based on quantum hard problems.
This section will discuss candidate problems for post-quantum cryptography.
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Figure 1: Example of a 2D lattice with basis vectors b1 and b2.

1.6.1 Lattice-based Cryptography

One promising direction in post-quantum cryptography is the use of lattices. As opposed to
classical cryptography, which is based on average-case problems, lattice-based cryptography is
based on worst-case problems [App16]. For example, integer factorisation is hard on average
over a certain distribution. That is why lattice-based cryptography is a promising candidate
for post-quantum cryptography.

Definition 1.3 (Lattice). According to [MR22], a lattice L is a set of points where each
point is a linear combination of n ∈ N vectors from a set of vectors B = {b1, ..., bn}, which
are called basis vectors and where B is called the basis of the lattice.

L(b1, ..., bn) =

{
n∑

v=1

cvbv : cv ∈ Z

}

Please refer to Figure 1 for an illustration of a lattice in 2D space.
There are two major quantum NP-hard problems associated with lattices: shortest vector

problem (SVP) and closest vector problem (CVP). The complexity of the problems lies in
the fact that a lattice can be represented with infinitely many bases. The longer and more
skewed the basis vectors of a lattice are, the harder it is to solve SVP and CVP. Please refer
to [ABSS97,Mic01] for proofs of NP-hardness of CVP and SVP respectively.

Theorem 1.1. For sufficiently large n, SVP and CVP are NP-hard [Mic01,ABSS97].

As the name suggests, SVP lies in finding the shortest non-zero vector in a lattice L
given that its basis is public. In this case, the secret key is one of the shortest vectors.
CVP requires one to find the closest vector CV (t) ∈ L to a vector t ∈ Rn, i.e., such that
|CV (t) − t| is minimised. [ABSS97] showed that even approximating the closest vector is
NP-hard. Suppose α defines the quality of an estimate, i.e., |CV (t)− t| < αmin

v∈L
|v − t|. As α

and n increase, the cost of approximating the closest vector becomes prohibitive, as is shown
in Figure 2.

CVP lies at the heart of many lattice-based encryption schemes. For example, NTRU
[HPS98] uses a p-coefficient polynomial z = z0+z1x+z2x

2+...+zp−1x
p−1 as the public key and

a pair of polynomials (d, e) as the secret key, where zi ∈ [0, q−1]. The ciphertext for a secret
key (d, e) is then calculated as c = ((zd + e) mod xp − 1) mod q, where mod xp − 1 means
that xj = xj mod p. Then polynomial pairs (u, v) that satisfy ((zu−v) mod xp−1) mod q = 0
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Figure 2: Approximating CV (t) in a lattice becomes an NP-hard problem for large lattices
and a low margin of error

constitute a 2p-dimensional lattice L, and the adversary’s goal is to recover the secret key
(d, e) based on the ciphertext c by finding the closest vector to (0, c), which is (d, c−e) [BL17].

Lattice-based cryptography supports homomorphic encryption and offers security param-
eters of reasonable size and runs relatively efficiently [MR22]. There have been attempts
at designing lattice-based digital signature schemes but they suffer from large signature
sizes [BL17]. One of the most promising lattice-based digital signature schemes is Lyuba-
shevsky’s system [Lyu12], which has shorter signature sizes but has no thorough security
proof.

1.6.2 Hash-based Signatures

As discussed previously, for a secure hash function H, recovering the pre-image x of a hash
H(x) is computationally hard. Lamport [Lam79] designed a one-time digital signature scheme
based on this problem. In his scheme, the message space is [0, 1], meaning that signatures
are computed bit-by-bit. For a bit j, two random strings xj0 and xj1 are picked and act
as the secret key of that bit. The verification key is (h(xj0), h(xj1)), where h is a collision-
resistant hash function. If, after decryption, the receiver discovers that a bit xj = b, where
b is either 0 or 1, the receiver computes the hash value of xjb and compares it to h(xjb) in
the public key. Overall, for an m-bit message, the sender must pick 2m random strings as
the secret key SK = (x10, x11, x20, x21, ..., xm0, xm1) and compute their hash values V K =
(h(x10), h(x11), h(x20), h(x21), ..., h(xm0), h(xm1)). For example, for a message 011101, SK =
(x10, x21, x31, x41, x50, x61). It is important to pick distinct secret keys for each bit and never
reuse any xij, otherwise, the security of the signature will degrade [BL17]. That is why this
digital signature scheme is called a one-time scheme. A major problem with it though is the
large size of the verification key. If each hash value in the verification key has 256 bits, then
the total size of SK for a 256-bit message is 256×256×2 = 131072 bits, or around 16kB, and
the total size of V K is also 16kB. To address this issue, Merkle [Mer01] proposed a binary
tree structure for verifying a signature based on the tree’s root, i.e., the verification key is
the root of the Merkle tree. Suppose a V K = (V1, V2, ..., V2k) has 2k keys/hashes. Then the
hashes are split into consecutive pairs (Vi, Vj), which constitute the leaves of a binary tree.
Then, for each pair, a new hash value is computed and set as the parent of the pair. The
process is repeated recursively for each layer until the root hash is computed. The root hash
is made public as the verification key. The signature consists of nodes needed to pave a path
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Figure 3: Demonstration of Lamport’s one-time signature based on a Merkle tree. Yellow
nodes are part of the signature of X3.

to the Merkle tree root. To illustrate this, consider a sample binary tree as in Figure 3. To
verify the hash of X3, only V3, V4 and V5 need to be shared because V6 can be computed
using V3 and V4. Then h(V5, V6) gives V7. If V7 matches the hash value in the verification
key, signature verification is successful.

Because the same keys cannot be reused in this scheme, it is stateful, meaning it must keep
track of all previously used keys, which can be problematic. Stateless hash-based signatures,
on the other hand, have large signature sizes [BL17].

1.6.3 Isogeny-based Cryptography

Isogeny-based cryptography is based on elliptic curves. It is an attractive option for post-
quantum cryptography because it has much smaller key sizes that are comparable to those
of existing systems [DK22]. Before discussing isogeny-based cryptography, let us briefly go
over the definition of elliptic curves.

Definition 1.4 (Elliptic Curve). The set of solutions of a polynomial equation in a, b ∈ Zp

of the form y2 = x3 + ax + b mod p is defined as an elliptic curve, where 4a3 + 27b2 ̸= 0
mod p and p ≥ 5 is a prime [KL20]. The addition of two points P and Q on an elliptic
curve E is defined as the projection of the intersection point of a line that goes through P
and Q on E (i.e., the projection of a third point that is neither P nor Q but intersects with
E). According to Bezout’s theorem, any line cuts an elliptic curve E in exactly three points.

Please refer to Figure 4 for an illustration of point addition. In the figure, P = P1,
Q = P2, P1 + P2 = −P3, and −P3 is a projection, or image, of P3.

Definition 1.5 (Scalar Multiplication of a Point on an Elliptic Curve). Scalar mul-
tiplication of a point P by a scalar n on an elliptic curve is defined as [n]P = P + ...+ P︸ ︷︷ ︸

n

,

where + denotes point addition.

In traditional ECC, a point on an elliptic curve is mapped onto its image on the same
curve. Similarly, at a high level, in isogeny-based cryptography, a whole elliptic curve is
mapped onto its image in the elliptic curve space. A brief description of isogenies will be
given in this section but readers are encouraged to refer to original sources for a detailed
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Figure 4: Illustration of point addition on an elliptic curve [KL20].

explanation. To understand isogenies, it is necessary to define a few terms first. The following
definitions are taken from [DK22] and [ISA19].

Definition 1.6 (Rational Map). A rational map ϕ is a one-to-one key-value mapping
between two curves, where the key is any point P = (x, y) from the input curve and the value
is the ratio of polynomials p1, p2, q1 and q2, which forms another elliptic curve, as follows:
ϕ(x1, y1) = (p1(x,y)

q1(x,y)
, p2(x,y)
q2(x,y)

) = (x2, y2).

Definition 1.7 (Group Homomorphism). Group homomorphism is defined as preserving
addition, i.e., making sure the value of a function on the addition of two points is equivalent to
the sum of the function values computed on the two points separately: ϕ(P+Q) = ϕ(P )+ϕ(Q).

Definition 1.8 (Isogeny). An isogeny is a rational map ϕ : E0 → E1 between two curves
E0 and E1 that is also a group homomorphism.

In other words, an isogeny defines a mapping between a curve and its image, which is
itself an elliptic curve. Please refer to Figure 5 for a visual example.

Definition 1.9 (Isomorphism). An isogeny is said to be an isomorphism if it is a bijection,
i.e., it is a one-to-one mapping. Its curves are said to be isomorphic.

Scalar multiplication by n is also an isogeny with the definition of addition revised ac-
cordingly for elliptic curve addition. One useful property of isomorphic elliptic curves is that,
even though they are different, their j-invariants are the same, and the j-invariant can be used
as the shared key. The proof of the above theorem is beyond the scope of the lecture.

Definition 1.10 (j-invariant of an Elliptic Curve). The the j-invariant of an elliptic
curve E : y2 = x3 + ax+ b is

j(E) =
6912a3

4a3 + 27b2
(1)

Theorem 1.2. Isomorphic elliptic curves have the same j-invariant.

This formed the basis of an isogeny-based key exchange mechanism called SIDH (Super-
singular Isogeny-Based Diffie-Hellman) [JDF11], which was submitted to NIST’s competition.
However, it was recently shown to be insecure [CD22], but other isogeny-based schemes like
CSIDH [CLM+18] have not yet been shown to be vulnerable.
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Figure 5: Illustration of an isogeny in the elliptic curve space.

1.7 Future Work

Even though NIST is expected to finalise the post-quantum cryptography standard by 2024,
current schemes still have a number of limitations. For example, digital signature schemes
selected for standardisation are slow or have large sizes, so one direction for future work
is to design better post-quantum digital signature schemes. Another major milestone to
achieve is to integrate post-quantum cryptography into the TLS layer for future quantum-
safe communications. Finally, more post-quantum cryptographic algorithms may need to be
designed, e.g., for authenticated key exchange.

1.8 Summary

In summary, advances in quantum computing pose a significant threat to existing cryptosys-
tems, rendering them insecure in the future. Therefore, measures must be taken to design
post-quantum cryptographic standards for quantum-safe communications. NIST has under-
taken major steps towards standardisation with promising solutions based on quantum hard
problems related to lattices, error-correction codes, etc., but still, more work is needed to
integrate post-quantum cryptography into existing systems and make it more efficient.

2 Fully Homomorphic Encryption
The approach of encryption is a crucial mechanism to preserve the privacy of sensitive infor-
mation/data. Even if the encrypted data is stored in / or accessible by an untrusted third
party, such as the cloud server, the data is still secure.

It will be very convenient if the could server could operate on the encrypted data directly.
In this way, the user does not need to download the data, operate on the data, encrypt the
data, and at last upload the encrypted data to the server again. What we need is the so-called
homomorphic encryption scheme. Homomorphic Encryption (HE), which is a special kind of
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encryption scheme, can address this problem as it allows any third party to operate on the
encrypted data without decrypting it.

The term homomorphism on encrypted data was used for the first time in 1978 by Rivest
et al. [RAD+78] as a solution to compute without decrypting problems. This had led to
a lot of work from all over the world to design homomorphic encryption with a large set
of or unlimited operations. It was until 2009 that Craig Gentry [Gen09] proposed the first
fully homomorphic encryption based on lattice. Before Gentry’s work, all the attempts al-
lowed either one type of operation or a limited number of operations on the encrypted data.
All the attempts can be categorized into three types: 1) partially homomorphic encryption
which only supports one type of operations with unlimited times; 2) somewhat homomor-
phic encryption that allows some operations with limited times; and 3) fully homomorphic
encryption which allows all the operations with an unlimited number of times.

We will introduce what is fully homomorphic encryption (FHE), start from partially
homomorphic encryption, discuss somewhat homomorphic encryption and show how to lift
it to FHE via the bootstrapping technique.

2.1 What is fully homomorphic encryption (FHE)

Informally, FHE allows for arbitrary computations on encrypted data. Computing on en-
crypted data means that if c1, c2, · · · , cn are encryptions of m1,m2, · · · ,mn and user wants
to obtain the encryption of f(m1, · · · ,mn) for some function f , it is possible to compute on
c1, c2, · · · , cn obtaining a ciphertext which decrypts to f(m1, · · · ,mn).

We formally define the syntax of fully homomorphic encryption scheme. A HE encryption
scheme HE consists of PPT algorithms (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) such that the
followings hold.

HE.KeyGen(1λ) On input 1λ, generate secret key sk, public key pk, and evaluation key evk,
respectively.

HE.Enc(pk,m) This is a probabilistic or deterministic algorithm. On input public key pk and
message m, generate and output c as the ciphertext.

HE.Dec(sk, c) This is a deterministic algorithm. On input secret key sk and the ciphertext
c, return the corresponding message m or ⊥.

HE.Eval(pk, f, evk, c1, · · · , cn) On input public key pk, function f from a function family
S, evaluation key evk, and ciphertexts c1, · · · , cn encrypting m1, · · · ,mn respectively,
return a ciphertext cf .

Definition 2.1 (Correctness). We say that HE correctly evaluates a function family S, if
for all f ∈ S and c1, · · · , cn encrypting m1, · · · ,mn respectively, we have

Pr[HE.Dec(sk, cf ) ̸= f(m1, · · · ,mn)] = negl,

where cf = HE.Eval(pk, f, evk, c1, · · · , cn), and the probability is taken over the randomness
used in the computation.
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If function family S only contains one operation (such as addition, multiplication), the HE
scheme is a partially homomorphic encryption scheme, including RSA [RSA78b] and Paillier
encryption [Pai99] schemes and so on.

If S contains several operations with limited times, the HE scheme is a somewhat homo-
morphic encryption scheme.

If S contains all the operations with unlimited times, the HE scheme is a fully homomor-
phic encryption scheme.

2.2 Partially homomorphic encryption

RSA [RSA78b] and Paillier encryption [Pai99] support the homomorphic operations of addi-
tion and multiplication with unlimited times, respectively.

Let N = pq be the multiplication of two primes p, q. Let ϕ(N) = (p − 1)(q − 1) be the
Euler function of N .

2.2.1 RSA

RSA encryption RSA has been discussed in Lecture 3, and consists of (KeyGen,Enc,Dec).

RSA.KeyGen(1λ) On input 1λ, select two primes p, q, compute N = pq and set ϕ(N) =
(p − 1)(q − 1). Choose e ∈ Z∗

ϕ(N) such that gcd(e, ϕ(N)) = 1) and compute d = e−1

mod ϕ(N). Let
sk = (N, d), pk = evk = (N, e).

RSA.Enc(pk := (N, e),m) On input public key (N, e) and message m ∈ ZN , generate and
output

c = me mod N

as the ciphertext.

RSA.Dec(sk, c) On input secret key sk := (N, d) and the ciphertext c, return the correspond-
ing message

m = cd mod N.

The RSA encryption supports the homomorphic operation of multiplication. Let c1, c2 be
the RSA encryption of m1,m2 respectively. We have

c1 · c2 mod N = me
1 ·me

2 mod N

= (m1m2)
e mod N

(2)

Thus, c1 · c2 mod N is the encryption of m1m2 mod N .

2.2.2 Paillier

Paillier encryption [Pai99] Pai is an encryption with message space ZN and ciphertext space
ZN2 , and consists of (KeyGen,Enc,Dec).
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Pai.KeyGen(1λ) On input 1λ, select two primes p, q, compute N = pq and set ϕ(N) = (p −
1)(q − 1). Compute λ(N) = lcm(p − 1, q − 1) where lcm represents the least common
multiple of two numbers. Let

sk = (N, λ(N)), pk = evk = N.

Pai.Enc(pk := N,m) On input public key N and message m ∈ ZN , choose a randomness
r ∈ Z∗

N generate and output

c = (1 +N)mrN mod N2

as the ciphertext.

Pai.Dec(sk, c) On input secret key sk := (N, λ(N)) and the ciphertext c, compute cλ(N)

mod N2. We have
1 +m ·Nλ(N) = cλ(N) mod N2. (3)

according to Lemma 2. We can recover m from equation 3, i.e, recover mλ(N) mod N
at first and then compute compute m with λ(N).

Since |Z∗
N2| = Nϕ(N), we have the lemma directly.

Lemma 1. For any r ∈ ZN , we have rNλ(N) = 1 mod N2.

Lemma 2.
(1 +N)x mod N2 = 1 + x ·N mod N2

Remark 1. Due to Lemma 1 and 2, we have

cλ(N) mod N2 = (1 +N)mλ(N)rNλ(N) mod N2

= (1 +N)mλ(N) mod N2

= 1 +m ·Nλ(N) mod N2.

(4)

The Paillier encryption supports the homomorphic operation of addition. Let c1, c2 be
the RSA encryption of m1,m2 respectively. We have

c1 · c2 mod N2 = (1 +N)m1rN1 mod N2 · (1 +N)m2rN2 mod N2

= (1 +N)m1+m2(r1r2)
N mod N2

(5)

Thus, c1 · c2 mod N2 is the encryption of m1 +m2 mod N .

2.3 Somewhat homomorphic encryption from lattice

In this subsection we present a somewhat homomorphic encryption scheme from learning
with errors (LWE) assumption.

Let A← Zm×n
q be a random chosen matrix, and

b = LWEA(s, e) = As+ e mod q,
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where s ∈ Zn
q and e ∈ Zm

q (the error term) are chosen from some distributions. (Generally, e
is a short vector) LWEA(·, ·) is called the LWE function.

According to the work of Regev [Reg09], LWE function is one way and b is indistinguish-
able with uniform distribution over Zm

q , assume the SIVP and GapSVP problem are hard
against quantum computer.

We can use the randomness of b in LWE function to design a symmetric key encryption
scheme. Informally, let s be the secret key. To encrypt a message m ∈ Zm, we sample A,
choose e according to the LWE function, and let

Encs(m, e) = (A,b+m mod q)

be the ciphertext, where b = As+ e mod q. With secret key s, we intend to recover m by
computing (b+m)−As mod q = m+ e mod q. Obviously, the least significant bits of m
is corrupted by the error e. We handle this problem by only use the most significant bits,
i.e., to encrypt m ∈ Zm

p , let

c = Encs(m, e) = (A,b+ ⌊q
p
⌋m mod q),

for some small number q (e.g. q = 2).
Then the decryption algorithm Decs1(c) computes (b+ ⌊ q

p
⌋m)−As mod q = ⌊ q

p
⌋m+ e

mod q and recovers the most significant bits of the message.
In this case, the encryption supports several linear operations. For example,

Encs(m1, e1) + Encs(m2, e2),

is the encryption of m1 +m2 while doubling the error term to e1 + e2; −Encs(m1, e1) is the
encryption of −m1, and c ∗ Encs(m1, e1) is the encryption of c ∗m1 for some constant c (the
error term is also multiplied by the constant c).

By using further technique, we could modify the scheme such that the operations of
several multiplication and addition could be supported.

We can see that the operations generally would add the size of error term (or noise).
However, if the somewhat encryption scheme supports the operation of decrytion circuit,
Gentry [Gen09] showed a novel technique to get a new ciphertext with small noise (error
term) from a ciphertext with large noise while both of them encrypt the same message.

2.4 Bootstrapping

Bootstrapping, proposed by Gentry [Gen09], is a technique to refresh a ciphertext with large
noise to a new ciphertext encryption the same message with small noise. We use the notions
of Section 2.3 to illustrate how it works. We assume that a somewhat encryption as in Section
2.3 and its decryption function belongs to the function family S (the scheme we have shown
does not satisfy this, more work should be done to achieve this).

Let s1 be the secret key, and c1 = Encs1(m, e1) is the encryption of m with a large noise
e1.

let c = Encs2(s1, e2) let the encryption of s1 under another secret key s2 with a small noise
e2). Let c be the public parameter related to the encryption scheme. We could transfer c1
to a new ciphertext of m under secret key s2 with a small noise e2).
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Denote function fc1 : s1 → Decs1(c1). As said before, we assume fc1 ∈ S. Thus, we could
apply the homomorphic operations to c and get

c2 =Encs2(fc1(s1), e2)

= Encs2(Decs1(c1), e2)

= Encs2(m, e2),

(6)

which is the encryption of m under secret key s2 with a small noise e2).
Now, the new ciphetext is like just encrypted (under another secret key). Further homo-

morphic operations could be applied until the noise is larger than a threshold again. Then,
we applied the bootstrapping to reduce the noise to a small one.

2.5 Four generations of FHE

Note1

The first generation of FHE In 2009, Gentry [Gen09] introduced the first homomorphic
encryption scheme based on ideal lattices. Its security is based on three mathematical prob-
lems and an additional security assumption: the Sparse Subset Sum Problem, the Bounded
Distance Decoding Problem ,the Ideal Coset Problem and circular security assumption. Gen-
try designed a blueprint for the construction of homomorphic encryption scheme: First, con-
struct a somewhat homomorphic encryption scheme, which can homomorphically evaluate
circuits of a certain depth; Then the decryption circuit is squashed to make it homomor-
phically evaluate its own augmented decryption circuit; Finally, Bootstrapping is performed
to obtain a fully homomorphic encryption scheme that can homomorphically evaluate arbi-
trary circuits. Bootstrapping is basically "recrypting" procedure to get a fresh ciphertext
corresponding to the same plaintext.

In 2010, Van Dijk et al. [vDGHV10] proposed a fully homomorphic encryption scheme on
integers based on the blueprint designed by Gentry. The security of the scheme is based on
SSSP assumption and AGCD assumption. The first generation of homomorphic encryption
schemes represented by [Gen09] and [vDGHV10] have significant shortcomings in efficiency
and security.

The second generation of FHE In 2011, Brakerski and Vaikuntanathan introduced two
FHE schemes based on the LWE [BV11a] and the RLWE [BV11b], and the circular security
assumption. The first scheme proposed two new techniques: re-linearization and dimension-
modulus switching. The re-linearization technique is used to construct a SHE scheme and the
dimension-modulus switching technique is used to reduce the complexity of the decryption
circuit. Although there is no need to squash the decryption circuit, the public key still needs
to include the encryption of its private key information. Compared with the first generation
scheme, the efficiency and security of these schemes have been greatly improved. However,
the encryption of its private key information is still required in homomorphic evaluation,
resulting in relatively large key sizes that limit the efficiency of the schemes.

1this subsection is done by Xiaohan Wan
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The third generation of FHE The third generation of FHE started with GSW scheme
[GSW13].The scheme proposed a technique called approximate eigenvector method, avoided
the use of re-linearization. In this scheme, homomorphic addition and multiplication cor-
respond directly to matrix addition and multiplication, making it conceptually simpler and
more efficient. In 2014, Brakerski and Vaikuntanathan [BV14] improved the bootstrapping
process using the GSW scheme and Barrington’s theorem [Bar86], resulting in shorter compu-
tation time and slower error growth, while maintaining the security level comparable to that
of a regular public key encryption based on the LWE problem. Ducas and Micciancio [DM15]
proposed a new bootstrapping method which can homomorphically compute the NAND of
two standard LWE ciphertexts. Overall,the third generation FHE had further improved in
terms of security and efficiency.

The fourth generation of FHE In 2017, Cheon, Kim, Kim and Song [CKKS17] intro-
duced a new generation of FHE. Its security is based on the RLWE problem. Unlike the
previous generations of homomorphic encryption schemes, the core of the CKKS scheme
lies in treating the encryption noise as part of the approximate evaluation error, with the
decrypted result being directly viewed as an approximate value of the original plaintext mes-
sage. In 2018, Cheon et al. [CHK+18] proposed a bootstrapping algorithm for the CKKS
scheme to achieve fully homomorphism. An interesting feature of CKKS is the capability
to homomorphically operate over approximations of real numbers, which makes it a suitable
scheme to work with floating-point arithmetic. Therefore, it is suitable for scenarios such as
machine learning that do not require precise results.
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