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In this lecture, practical algorithms that are employed in real-world network security
enhancing scenarios are introduced. Before diving into the detailed theories about the algo-
rithms, we would first summarize the Elliptic Curve-based encryption and signature. Then
we are going to describe SSL/TLS and HTTPS in details in the following sections in the
lecture note.

1 Elliptical Curve Cryptography (ECC)
In previous lectures we saw many applications of the discrete log, CDH, and DDH assump-
tions in a finite cyclic group G. A primary example for the group G is the multiplicative
group (or subgroup) of integers modulo a sufficiently large prime p. This group is problem-
atic for a number of reasons, most notably because the discrete log problem in this group
is not sufficiently difficult. The best known algorithm, called the general number field sieve
(GNFS) can run in time exp(Õ(log p)1/3). This algorithm is the reason why, in practice, we
must use a prime p whose size is at least 2048 bits. Arithmetic modulo such large primes is
slow and greatly increases the cost of deploying cryptosystems that use this group.

Several other families of finite cyclic groups with an apparent hard discrete log have
been proposed. Of all these proposals, the group of points of an elliptic curve over a prime
finite field is the most suitable for practice, and is widely used on the Internet today. The
best known discrete log algorithm in an elliptic curve group of size q runs in time O(

√
q).

The group operation could use a small number of arithmetic operations modulo a 256-bit
prime, which is considerably faster than arithmetic modulo a 2048-bit, while keeping the
same insurance on security.

1.1 Elliptic Curves

Let K be any field. The projective plane P2(K) over K is defined as the set of triples

(X, Y, Z)

where X, Y, Z ∈ K are not all simultaneously zero. On these triples is defined an equivalence
relation

(X, Y, Z) ≡ (X
′
, Y

′
, Z

′
)
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if there exists a λ ∈ K such that

X = λX
′
, Y = λY

′
and Z = λZ

′
.

An elliptic curve over K will be defined as the set of solutions in the projective plane P2(K)
of a homogeneous Weierstrass equation of the form

E : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3

with a1, a2, a3, a4, a6 ∈ K. This equation is also referred to as the long Weierstrass form.
Such a curve should be non-singular in the sense that, if the equation is written in the
form F (X, Y, Z) = 0, then the partial derivatives of the curve equation should not vanish
simultaneously at any point on the curve.

For convenience, we will most often use the affine version of the Weierstrass equation,
given by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (1)

where ai ∈ K. Assume, for the moment, that char K ̸= 2, 3, and consider the change of
variables given by

b2 = a21 + 4a2

X = X
′ − b2

12

Y = Y
′ − a1

2
(X

′ − b2
12

)− a3
2

This change of variables transforms the long Weierstrass form given in Equation 1 to the
equation of an isomorphic curve given in short Weierstrass form,

E : Y 2 = X3 + aX + b

for some a, b ∈ K. One can then define a group law on an elliptic curve using the chord-
tangent process.

The chord process is defined as follows, see Fig. 1.1 for a diagrammatic description. Let
P and Q be two distinct points on E. The straight line joining P and Q must intersect the
curve at one further point, say R, since we are intersecting a line with a cubic curve. The
point R will also be defined over the same field of definition as the curve and the two points
P and Q. If we then reflect R in the x-axis we obtain another point over the same field
which we shall call P + Q. One can show that the chord-tangent process turns E into an
abelian group with the point at infinity O being the zero.

1.2 Elliptic Curves over Finite Fields

For cryptographic applications we are mostly interested in elliptic curves over finite fields.
For simplicity, we only consider elliptic curves denoted over a finite field Fp where p > 3 is
a prime.
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Figure 1: Adding two points on an elliptic curve [S+03]

Definition 1. Let p > 3 be a prime. An elliptic curve E defined over Fp is an equation

y2 = x3 + ax+ b (2)

where a, b ∈ Fp satisfy 4a3 + 27b2 ̸= 0. We write E/Fp to denote the fact that E is defined
over Fp. [BS23]

The condition 4a3 + 27b2 ̸= 0 ensures that the equation x3 + ax+ b = 0 does not have a
double root. This is needed to avoid certain degeneracies.

As we discussed in the previous section, there is a natural group law denoted on the
points of an elliptic curve. The group operation is written additively using the symbol "⊞"
to denote point addition. We define the point at infinity O to be the identity element: for
all P ∈ E(Fpe) we define P ⊞O = O ⊞ P = P .

This addition law makes the set E(Fpe) into a group. The identity element is the point
at infinity. Every point O ̸= P = (x1, y1) ∈ E(Fpe) has an additive inverse, namely −P =
(x1,−y1). Finally, it can be shown that this addition law is associative. The group law is
clearly commutative, P ⊞Q = Q⊞ P for all P,Q ∈ E(Fpe), making this an abelian group.

1.3 Elliptic Curves in Practice

1.3.1 Curve P256

Two widely used elliptic curves, called secp256r1 and secp256k1, are specified in a stan-
dard called SEC2, where SEC is an acronym for "standards for efficient cryptography." Both
curves are defined over a 256-bit prime field, hence the "256" in their names. The ’r’ in
secp256r1 signifies that the curve is a random curve, meaning that it was generated by a
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certain sampling procedure. The curve secp256r1 is widely used in Internet protocols, while
secp256k1 is widely used in blockchain systems.

The curve secp256r1. This curve was approved by the U.S. National Institute of
Standards (NIST) for federal government use in a standard published in 1999. The NIST
standard refers to this curve as Curve P256. All implementations of TLS 1.3 are required
to support this curve for Diffie-Hellman key exchange. It is the only mandatory curve in the
TLS 1.3 standard. The curve secp256r1 is defined as follows:

• The curve is defined over the prime pr := 2256 − 2224 + 2192 + 296 − 1. The special
structure of this prime is meant to improve the performance of arithmetic modulo pr.

• The curve has the Weierstrass form y2 = x3−3x+ b where b ∈ Fpr written as a 255-bit
number in hexadecimal is:

b := 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b.

• The number of points on this curve is a prime number. Recall that it must be close to
pr.

• The standard also specifies a point Gr that generates the entire group E(Fpr), where
E is the curve secp256r1.

How was the odd looking parameter b selected? The reality is that we do not really
know. The standard lists an unexplained constant called a seed S. This seed was provided
as input to a public deterministic algorithm, that generated the parameter b. This process
was designed to select a random curve that resists the known discrete log attacks. The
problem is that we do not know for sure how the seed S was selected. An organization that
wants to use secp256r1 might worry that S was chosen adversarially so that discrete log on
the resulting curve is easy. Currently we do not know how to select such a seed even if we
wanted to, so this concern is just an intriguing speculation. As far as we can tell, secp256r1
is a fine curve to use. It is widely used in Internet protocols.

Security of discrete log on secp256r1. Because the prime pr is close to 2256, the
number of points on the curve is also close to 2256. Therefore, computing discrete log on the
curve using a generic discrete log algorithm takes approximately 2128 group operations. We
assume that no algorithm can compute discrete log much faster than that. The intent is that
discrete log on the curve (as well as CDH and DDH on both curves) should be at least as
hard as breaking AES-128. Consequently, if one is aiming for the level of security provided
by AES-128, then secp256r1 curve can be used for Diffie-Hellman key exchange, public-key
encryption, and digital signatures.

1.3.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

Because the Schnorr system was protected by a patent, NIST opted for a more ad-hoc
signature scheme based on a prime-order subgroup of Z∗

p that eventually became known as
the Digital Signature Algorithm or DSA. The standard was later updated to support elliptic
curve groups defined over a finite field.
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The Elliptic Curve Digital Signature Algorithm (ECDSA) signature scheme (G,S, V )
uses the group of points G of an elliptic curve over a finite field Fp. Let g be a generator of G
and let q be the order of the group G, which we assume is prime. We will use multiplicative
notation for the group operation. We will also need a hash function H defined over (M,Z∗

q).
The scheme works as follows:

• G(): Choose α
R←− Z∗

q and set u← gα ∈ G. Output sk := α and pk := u.

• S(sk,m): To sign a message m ∈M with secret key sk = α do:

repeat:

αt
R←− Z∗

q, ut ← gαt

let ut = (x, y) ∈ G where x, y ∈ Fp

treat x as an integer in [0, p) and set r ← [x]q ∈ Zq

s← (H(m) + rα)/αt ∈ Zq

until r ̸= 0 and s ̸= 0
output (r, s) ∈ Z2

q

• V (pk,m, σ): To verify a signature σ = (r, s) ∈ Z2
q on m ∈M with pk = u ∈ G do:

if r = 0 or s = 0 then output reject and stop
α← H(m)/s ∈ Zq, b← r/s ∈ Zq

ût ← gaub ∈ G
if ût is the point at infinity in G then output reject and stop
let ût = (x̂, ŷ) ∈ G where x̂, ŷ ∈ Fp

treat x̂ as an integer in [0, p) and set r̂ ← [x̂]q ∈ Zq

if r = r̂ output accept; else output reject

When using the elliptic curve P256, both p and q are 256-bit primes. An ECDSA signa-
ture σ = (r, s) is then 512 bits long.

A straightforward calculation shows that the scheme is correct: for every key pair (pk, sk)
output by G, and every message m ∈M, if σ R←− S(sk,m) then V (pk,m, σ) outputs accept.
The reason is that ût computed by V is the same as ut computed by S.

For security, it is important that the random value αt generated during signing be a
fresh uniform value in Z∗

q. Otherwise the scheme can become insecure in a strong sense: an
attacker can learn the secret signing key α.

ECDSA is not strongly secure. While the Schnorr signature scheme is strongly
secure, the ECDSA scheme is not. Given an ECDSA signature σ = (r, s) on a message m,
anyone can generate more signatures on m. For example, σ′ := (r,−s) ∈ (Z∗

q)
2 is another

valid signature on m. This σ′ is valid because the x-coordinate of the elliptic curve point
ut ∈ G is the same as the x-coordinate of the point 1/ut ∈ G.
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2 Transmission Control Protocol & Internet Protocol
Transmission Control Protocol (TCP) and Internet Protocol (IP) are the collections of pro-
tocols that allows the computers to connect with the network and exchange data with other
computers over the Network. The TCP/IP model is the foundation of the Internet that
was introduced by the U.S. Department of Defence (DoD). TCP/IP protocols are based
and implemented on the reference of the OSI Model (Open System Interconnection). OSI
Model is the theoretical model that defines some set of protocols that need to be followed
by every network for the successful transmission of data over the network. Most networking
systems that we encounter today follow the TCP/IP model. TCP/IP Model much simplified
practical model that is practically used in the real world. [Int21]

Figure 2: OSI model and TCP/IP model [Gee21]

TCP/IP Model is a practically implemented version of the OSI Model. Although layers
are different in TCP/IP Model in comparison with the OSI Model as shown in Fig. 2.
The layers are grouped according to the task performed by each layer. It has commonly 4
layers: Application Layer, Transport Layer, Network Layer and Network Interface Layer (or
Network Access Layer).

• Application Layer: The application layer encompasses interactions between net-
worked applications. When applications necessitate communication with the network,
they adhere to the protocols specified within this layer. Numerous protocols are em-
ployed by individual applications for transmitting data to or retrieving data from the
network.

• Transport Layer: The TCP/IP transport layer protocols exchange data receipt ac-
knowledgments and retransmit missing packets to ensure that packets arrive in order
and without error. End-to-end communication is referred to as such. Transmission
Control Protocol (TCP) and User Datagram Protocol are transport layer protocols at
this level (UDP).

– TCP: Applications can interact with one another using TCP as though they
were physically connected by a circuit. TCP transmits data in a way that resem-
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bles character-by-character transmission rather than separate packets. A starting
point that establishes the connection, the whole transmission in byte order, and
an ending point that closes the connection make up this transmission.

– UDP: The datagram delivery service is provided by UDP, the other transport
layer protocol. Connections between receiving and sending hosts are not verified
by UDP. Applications that transport little amounts of data use UDP rather than
TCP because it eliminates the processes of establishing and validating connec-
tions.

• Network Layer: The Network Layer is a layer in the Internet Protocol (IP) suite,
which is the set of protocols that define the Internet. The Network Layer is responsible
for routing packets of data from one device to another across a network. It does this
by assigning each device a unique IP address, which is used to identify the device and
determine the route that packets should take to reach it.

• Network Access Layer: The Network Access Layer consists of two sublayers called
Data Link Layer and Physical Layer. The packet’s network protocol type, in this case,
TCP/IP, is identified by the data-link layer. Error prevention and “framing” are also
provided by the data-link layer. While the Physical Layer is responsible for generating
the data and requesting connections. It acts on behalf of the sender and the Network
Access layer on behalf of the receiver.

3 Security Socket Layer & Transport Layer Security
In this section, we embark on a comprehensive exploration of Secure Sockets Layer (SSL) and
its follow-on Internet standard, Transport Layer Security (TLS), which are foundational pro-
tocols that establish a fortified channel for secure data transmission over computer networks.
Positioned just above TCP in the networking stack (as depicted in Figure 3), these protocols
can be universally implemented within the underlying protocol suite, affording transparency
to applications and ensuring widespread adoption. This approach not only enables end-to-
end security between clients and servers but also offers the flexibility to be integrated into
specific software packages. A testament to its ubiquity and importance, TLS functionality is
embedded within the vast majority of web browsers and is an integral component of modern
web servers. The evolution from SSL to TLS has marked a pivotal progression in internet
security standards, and understanding their mechanisms, applications, and impact is crucial
for navigating the digital landscape. Through this paper, we intend to dissect the architec-
ture, discuss the implementation choices, and evaluate the security measures that SSL and
TLS provide, illuminating their role in the current era of internet communication.

3.1 Historical Overview of SSL and TLS

The digital landscape of the 1990s witnessed a growing concern for security as the internet
increasingly facilitated commercial and private communications. To address these security
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Figure 3: Relative location of security facilities of TLS [Sta]

concerns, SSL (Secure Sockets Layer) was developed by Netscape Communications Corpo-
ration, marking the beginning of a series of protocols designed to secure data transmission
over the internet.

3.1.1 The Birth and Evolution of SSL

SSL’s journey began with the unreleased SSL 1.0 with serious security flaws, quickly followed
by SSL 2.0 in 1995. While SSL 2.0 was the first protocol version released to the public, it also
had significant security flaws, which led to the development of SSL 3.0 in 1996. SSL 3.0 was
developed by Paul Kocher in conjunction with Netscape engineers Phil Karlton and Alan
Freier. The reference implementation was carried out by Christopher Allen and Tim Dierks
from Consensus Development. It introduced major improvements over its predecessor, such
as a complete redesign of the handshake process and enhanced encryption features. Despite
these advancements, it was not free from vulnerabilities, as demonstrated by subsequent
exploits like the POODLE attack.

3.1.2 Transitioning to TLS

As the internet matured, so did the need for more sophisticated security measures. This
led to the Internet Engineering Task Force (IETF) stepping in to standardize a successor
to SSL, resulting in the introduction of TLS 1.0 in 1999. TLS 1.0 was first defined in RFC
2246, an attempt to shore up the security of SSL 3.0, yet it maintained a high degree of
backward compatibility.

In 2006, TLS 1.1 was released in RFC 4346, addressing some of the cryptographic weak-
nesses inherent in TLS 1.0, such as issues related to initialization vectors. The evolution
continued with TLS 1.2 defined in RFC 5246 in 2008, which introduced a suite of stronger
cryptographic algorithms and was widely adopted as the de facto standard for secure web
communications.

3.1.3 The Modern Era with TLS 1.3

The most significant leap came with TLS 1.3 (defined in RFC 8446) in 2018. This itera-
tion of the protocol, defined in RFC 8446, represented a major security advancement. It
streamlined the handshake process, significantly reducing the time required to establish a
secure connection, and enforced the use of forward secrecy, ensuring that the compromise of
a single key would not compromise past communications.
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3.2 Security Socket Layer

3.2.1 Architecture

The Secure Sockets Layer (SSL) architecture, integral to internet security, operates atop the
foundational internet protocols: IP for routing and addressing, and TCP for reliable data
transmission. Central to SSL are the SSL Record Protocol, which encrypts and authenticates
data exchange to maintain confidentiality and integrity, and the SSL Handshake Protocol,
which establishes a secure connection through mutual authentication and key exchange for
encryption, both functioning above TCP at the session layer.

Figure 4: SSL architecture on page 24, lecture slides 5

In practice, the SSL process unfolds in four stages:

• TCP connection setup: This begins with the setup of a TCP connection, where the
client sends a synchronization signal (SYN) to the server, and the server responds with
an acknowledgment (ACK), effectively establishing the TCP connection.

• Handshake: Once the TCP connection is active, the SSL handshake begins. During
the handshake, both the client and server negotiate to select the specific encryption
algorithms and methods they will use for the session. Then, the server, and optionally
the client, will be authenticated, to confirms the identity of the parties involved in
the communication. Following authentication, keys are established for use in the SSL
session.

• Data transfer: With the secure channel established, data is transferred between the
client and server. This data is encrypted, ensuring that the information exchanged is
protected from eavesdropping or tampering.

• TCP connection closure: After the secure data transfer is complete, the TCP
connection is closed. This is done by sending a finish signal (FIN) followed by an
acknowledgment (ACK), signaling the end of the session.
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Figure 5: SSL process on page 25, lecture slides 5

3.2.2 Record Protocol

The SSL/TLS Record Layer operates atop a reliable transport protocol, typically TCP,
leveraging session keys established during the Handshake phase to secure communication.
The Record Layer’s duties include fragmenting, compressing, authenticating, and encrypting
application data as depicted in Figure 2. The process is as follows:

Application data is initially fragmented into smaller, manageable blocks. Each block
then undergoes a sequence of security enhancements. First, the data fragment is compressed
to reduce its size. Subsequently, a Message Authentication Code (MAC), derived from
algorithms such as HMAC-MD5 or HMAC-SHA256, is computed for the compressed data
to ensure its integrity and authenticity. The data is then encrypted using a symmetric
encryption algorithm like AES or DES to ensure confidentiality. Finally, an SSL Record
header, containing the necessary control information, is prefixed to the encrypted message
forming the complete SSL Record.

The integration of MAC and encryption can be implemented in three distinct methods:

• MAC-then-Encrypt: This method involves computing the MAC on the plaintext
data, then encrypting both the plaintext and the MAC. Although this method bundles
authentication and encryption, it has been criticized as it does not protect the integrity
of the ciphertext itself. An attacker might alter the encrypted data, which would not
be detectable until after decryption.

• MAC-and-Encrypt: With this approach, the MAC is computed on the plaintext and
then the data is encrypted separately. The MAC and the ciphertext are transmitted
together. However, this method also fails to protect the integrity of the encrypted
message since the MAC is computed on the plaintext.

• Encrypt-then-MAC: This technique, which is now widely recommended, involves
encrypting the plaintext first, followed by the computation of the MAC on the resulting
ciphertext. The MAC is then appended to the ciphertext. This approach ensures the
integrity of the encrypted data as any alteration to the ciphertext would result in a
MAC verification failure upon decryption.

The SSL/TLS Record Layer has been the subject of various security vulnerabilities over
time, which have prompted the evolution of the protocols to enhance security. Here are some
notable vulnerabilities associated with the Record Layer:

• Attacks on RC4: RC4 is a stream cipher once popular in SSL/TLS encryption. How-
ever, over time, vulnerabilities were discovered, including biases in the RC4 keystream
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that could be exploited to gradually reveal plain text from repeated ciphertexts. Due
to these vulnerabilities, the use of RC4 in SSL/TLS has been deprecated, and its use
is strongly discouraged.

• CBC IV Reuse (BEAST): The Block Encryption Algorithm Secure Transport
(BEAST) attack takes advantage of a vulnerability in the Cipher Block Chaining
(CBC) mode of operation used with block ciphers. In earlier versions of TLS (1.0 and
before), the Initialization Vector (IV) for CBC encryption could be predictable, allow-
ing an attacker to derive information about the plaintext of two consecutive blocks.
To mitigate this, later versions of TLS use an explicit per-record IV, improving the
security of CBC mode.

• MAC-then-Encrypt and Padding Attacks: When using MAC-then-Encrypt, the
MAC is computed on the plaintext and then both the plaintext and MAC are en-
crypted together. This process involves padding the plaintext to align with the block
cipher’s block size. Vulnerabilities such as the Padding Oracle On Downgraded Legacy
Encryption (POODLE) exploit the predictability and malleability of the padding struc-
ture. This can allow an attacker to decrypt messages by manipulating the ciphertext
and analyzing the server’s responses. To protect against such attacks, the ‘Encrypt-
then-MAC‘ method is preferred, and SSL/TLS implementations should use AEAD
(Authenticated Encryption with Associated Data) ciphers, which combine encryption
and authentication in a single operation and do not require separate padding.

3.2.3 Handshake Protocol

The SSL/TLS handshake involves several steps, which are divided into three phases:
Phase 1: Security Capabilities Negotiation

• Client to Server: The client sends a client_hello message which includes the
client’s SSL/TLS version, supported cipher suites, compression methods, and a client-
generated random number.

• Server to Client: The server responds with a server_hello message, selecting the
SSL/TLS version, cipher suite, compression method, and providing a server-generated
random number for the client to verify the server’s identity. This step confirms the
server’s readiness to begin secure communication.

Phase 2: Authentication and Key Exchange

• Server to Client:

– The server sends its certificate for for the client to authenticate the server’s
identity.

– If the key exchange algorithm requires additional data (e.g., Diffie-Hellman pa-
rameters), the server sends a server_key_exchange message.

– The server requests the client’s certificate for mutual authentication using a
certificate_request message.
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– The server ends this phase with a server_hello_done message.

• Client to Server:

– The client verifies the server’s certificate.

– The client sends its own certificate to the server.

– The client sends a client_key_exchange message, containing the pre-master
secret encrypted with the server’s public key, or the necessary key exchange in-
formation.

– The client sends back a certificate_verify message for authentication.

Phase 3: Finalizing the Handshake

• Both parties compute the master secret from the pre-master secret and exchanged
random numbers.

• Client to Server: The client sends a change_cipher_spec message to signal that
subsequent messages will be encrypted. The client also sends a finished message,
encrypted with the agreed cipher suite, to verify the key exchange and authentication
process.

• Server to Client: The server sends a change_cipher_spec message, followed by an
encrypted Finished message, to confirm the handshake completion on its end.

• After both the client and server have sent and verified the finished messages, the
secure communication channel is established and ready for data transfer.

3.3 Transport Layer Security

3.3.1 TLS 1.2

With the introduction of Transport Layer Security (TLS) 1.2, specified in RFC 5246, a
suite of security enhancements was implemented to address the evolving landscape of cyber
threats. The key improvements that define TLS 1.2 over its predecessors are as follows:

• Transition from MD5/SHA-1 to SHA-256: TLS 1.2 deprecated the use of the
MD5 and SHA-1 hashing algorithms, which were susceptible to collision attacks, in
favor of the more secure SHA-256. This algorithm is part of the SHA-2 family and
provides a 256-bit hash, significantly increasing security for data integrity.

• Support for Authenticated Encryption: Cipher suites that incorporate authen-
ticated encryption were introduced, combining encryption and authentication in one
step. This not only provides confidentiality but also verifies the integrity and authen-
ticity of the encrypted data.
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Figure 6: SSL handshake protocol action [Sta]

• Authenticated Encryption with Additional Data (AEAD): The inclusion of
AEAD cipher suites like AES-GCM and ChaCha20-Poly1305 allows for the encryption
of plaintext and the authentication of both the ciphertext and any associated data.
This dual functionality ensures a high standard of security and data integrity.

• Added HMAC-SHA256 Cipher Suites: TLS 1.2 extended its cryptographic capa-
bilities by including cipher suites that use HMAC-SHA256 for message authentication.
This is a significant improvement over the HMAC implementations using MD5 or
SHA-1.

• Removal of IDEA and DES Cipher Suites: Outdated cipher suites based on
the International Data Encryption Algorithm (IDEA) and Data Encryption Standard
(DES) were removed from TLS 1.2 due to their vulnerabilities and limited key sizes.
This change fosters a stronger security posture for communications protected by TLS.
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Figure 7: message flow for a full handshake of TLS 1.2 on page 37, lecture slides 5

3.3.2 TLS 1.3

The introduction of Transport Layer Security (TLS) 1.3, as defined in RFC 8446, marked a
significant advancement in the TLS protocol with the aim of improving security, efficiency,
and speed of encrypted communications. TLS 1.3 simplifies and streamlines the protocol,
reducing the number of round trips required to establish a secure connection and introducing
several new features to enhance security. Below we summarize the key features of TLS 1.3:

• Authenticated Encryption with Associated Data (AEAD):

– TLS 1.3 mandates the use of AEAD cipher suites, which combine encryption, de-
cryption, authentication, and validation into a single operation, thereby providing
stronger security guarantees.

• Removal of Static RSA and Diffie-Hellman Cipher Suites:

– The protocol removes support for static RSA and DH key exchange methods,
enforcing the use of ephemeral key exchange techniques that provide forward
secrecy.

• Encrypted Handshake Messages:

– All handshake messages after the initial ClientHello and ServerHello are en-
crypted, protecting the integrity of the key exchange and authentication processes.

• Key Derivation Function:

– TLS 1.3 uses the HMAC-based Extract-and-Expand Key Derivation Function
(HKDF) for generating keys, which is seen as more secure and efficient.

• Support for "Zero Round-Trip Time" (0-RTT):

– This feature allows clients to send encrypted data to the server during the initial
handshake, without waiting for the handshake to complete, thus enabling faster
connection setups. This is particularly useful for reducing latency in subsequent
connections.



COMP 6712 Advanced Security and Privacy 2023/24

• Session Resumption with Pre-Shared Keys (PSK):

– TLS 1.3 allows for session resumption using pre-shared keys, which can signifi-
cantly reduce the number of round trips needed for subsequent handshakes and
speed up the secure connection establishment.

4 HTTPS
HTTPS, denoting HTTP secured by SSL or TLS, is a protocol designed to encrypt data
between a web browser and a server. While modern browsers inherently support HTTPS,
its effectiveness depends on server compatibility. Notably, some search engines are yet to
adopt HTTPS support.

The user-visible change with HTTPS is the ‘https://‘ prefix in the URL instead of
‘http://‘, indicating that the communication is secured and takes place over port 443, in
contrast to the standard port 80 for HTTP.

4.1 Key Aspects of HTTPS Encryption

The following components are encrypted under HTTPS:

• The URL of the requested document.

• The document’s content.

• Data in browser forms.

• Cookies in both directions.

• The contents of the HTTP header.

HTTPS is formalized in RFC 2818, "HTTP Over TLS," and maintains the core func-
tionality of HTTP while providing an encrypted transport layer.

4.2 Establishing a Secure Connection

In an HTTPS context, the HTTP client also functions as the TLS client. The process
includes:

• Connection initiation to the server on the required port.

• Beginning the TLS handshake with a TLS ClientHello message.

• Sending HTTP data as TLS application data after the handshake.

• Adhering to standard HTTP behaviors, like persistent connections.

HTTPS operates across three connection awareness levels, incorporating HTTP request
handling, TLS session management, and TCP connectivity.
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4.3 Terminating a Secure Connection

To close a connection, the following steps are taken:

• Indication of closure through the HTTP header: Connection: close.

• Proper closure at the TLS level involves exchanging ‘close_notify‘ alerts before termi-
nating the connection.

HTTP clients must also be prepared for unexpected TCP disconnections without a
‘close_notify‘ alert. Such events may necessitate a security warning due to their poten-
tial as indicators of an attack.
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