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Lecture note 3: Public key cryptography

April 2, 2024

In this lecture, we embark on an exploration of public key cryptography algorithms, start-
ing with a review of Symmetric Key Cryptography. We will then delve into the mathematical
foundations that underpin public key cryptography and proceed to the details of its practical
implementation. The discussion encompasses prominent methods such as the Diffie-Hellman
Key Exchange [DH22], ElGamal encryption [ElG85], and the Rivest-Shamir-Adleman (RSA)
algorithm [BB79]. We delve into not only the mechanisms behind these algorithms but also
critically assess their security aspects. Finally, we round off our discourse with a comprehen-
sive introduction to secure shell protocol and digital signatures, two other vital applications,
that stems from the principles of public key cryptography.

1 Recall Symmetric Key Cryptography

1.1 Symmetric-key Encryption

A symmetric key encryption scheme is proposed in 2002 [DK02]. It consists of a triple of
polynomial-time algorithms (Gen,Enc,Dec) and a message space M, key space K, and
ciphertext space C.

1. Gen(1k) is a (randomized) key-generation algorithm that, on input a security parameter
k (often represented in unary notation as 1k), generates key K ← K, and outputs key
pair (K,K).

2. Enc(K,M) is a (randomized) encryption algorithm that, on input a key K and message
M ∈M, outputs ciphertext C ∈ C.

3. Dec(K,C) is a deterministic decryption algorithm that, on input a key K and cipher-
text C ∈ C, outputs M ∈M or ⊥.

We provide a simplified model of symmetric encryption in Figure 3. Note that every part
of the encryption process, except for the key itself, is known to the public. In other words,
the security of the encryption scheme should not depend on keeping the encryption algo-
rithm secret. This concept aligns with a fundamental principle in cryptography known as
Kerckhoffs’ principle [Kah96], which states as follows:

The cipher method must not be required to be secret, and it must be able to fall
into the hands of the enemy without inconvenience.
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Figure 1: Model of Symmetric-key Encryption

1.2 Security Definitions

Breaking/security is measured by the Aim and Capability of the adversary.

• Aim: Try to learn something meaningful from the target ciphertext.

• Capability:

– Ciphertext-only attack: the adversary only observes the ciphertext.
– Chosen-plaintext attack: in addition to observing the ciphertext, the adversary

can encrypt messages of his choice.
– Chosen-ciphertext attack: in addition to observing the ciphertext, the adversary

can choose ciphertexts to be decrypted, except for the target ciphertext.

Definition 1. A scheme Π is said to be computationally secure if any probabilistic polyno-
mial time (PPT) adversary succeeds in breaking the scheme with negligible probability.

Here, we give more details about this by introducing indistinguishably-eavesdropper
(IND-EAV) security. We define the experiment ExpIND-eva

Π (A) of scheme Π =
(Gen,Enc,Dec) between the adversary A and challenger as following,

1. The challenger runs Gen(1k) to generate the key K.

2. The adversary A outputs a pair of messages (m0,m1) ∈M such that |m0| = |m1|.

3. The challenger flips a fair binary coin b ← {0, 1} and encrypts the message mb using
the key K to obtain the ciphertext C ← Enc(K,mb).

4. The adversary A is given the ciphertext C and outputs a guess b′.

5. Return 1 if b′ = b, and 0 otherwise.

Definition 2 (IND-EAV Security). The IND-EAV-advantage of an adversary A against
IND-EAV security of Π is defined as

AdvIND-EAV
Π (A) =

∣∣∣∣Pr[ExpIND-EAV
Π (A) = 1]− 1

2
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Π is said to be IND-EAV secure if for any PPT adversary, IND-EAV-advantage is a negligible
function of λ.

1.3 Security Proof: Reduction

In computational complexity, the problem A is reducible to the problem B means that solving
problem B can be transformed into solving problem A, and this reduction method has been
formalized in [GSM18]. This transformation converts a problem instance xA of problem A
into a problem instance xB of problem B, and converts the problem solution yB of problem
B into the problem solution yA of problem A. Consequently, this reducibility implies that
problem B is at least as difficult as problem A.

1.4 Drawback of Symmetric Key Encryption

The primary disadvantage of using symmetric key encryption in a network of users is the
extensive requirement for key management. In a scenario where one user needs to commu-
nicate securely with N other users, each pair of users must share a unique symmetric key.
This means that for N users, there must be N(N−1)/2, which simplifies to O(N2), different
symmetric keys across the network. As the number of participants in the network grows, the
number of required keys increases quadratically, leading to significant challenges in securely
storing and managing these keys.

2 Introduction to Asymmetric Encryption
Asymmetric cryptography, often referred to as public-key cryptography, is a revolutionary
cryptographic paradigm that has significantly shaped the landscape of secure data trans-
mission since its inception. Unlike traditional symmetric cryptography where a single secret
key is used for both encryption and decryption, asymmetric cryptography employs a pair of
mathematically linked keys: a public key and a private key.

The fundamental principle underlying this system is that information encrypted with one
key can only be decrypted using its corresponding unique key. In practice, anyone can use
a person’s public key to encrypt messages intended for that individual, but the message can
only be deciphered by the recipient who possesses the matching private key. This elegant
design enables secure communication without requiring a pre-shared secret.

This two-key system provides an enhanced level of security as the public key can be
openly shared without compromising the confidentiality of the information being exchanged.
Asymmetric cryptography underpins numerous modern security protocols, including digital
signatures, key exchange, and secure online transactions such as those facilitated by SSL/TLS
certificates.

Two prime examples of asymmetric cryptography algorithms are the ElGamal encryption
scheme and the Rivest-Shamir-Adleman (RSA) algorithm, both of which utilize complex
mathematical problems to ensure the security of the encryption process. These algorithms
have become cornerstones in ensuring the confidentiality, integrity, and authenticity of digital
communications across the globe.

3
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3 Related Mathematical Theory

3.1 Modulo

Modulo plays a crucial role in many areas of mathematics, computer science, and cryptog-
raphy, especially in dealing with finite groups, modular arithmetic, and cyclic structures.

Definition 3. ∀p ∈ Z, q ∈ Z\{0}, ∃k, r ∈ Z : p = kq + r, 0 ≤ r < q. In this context, the
modulo operation is denoted by

p mod q = r. (1)

We usually refer k as ⌊p
q
⌋.

Definition 4. ∀q ∈ Z\{0}, p1, p2, ..., pn ∈ Z, we say p1, p2, ..., pn congruent modulo q iff

p1 mod q = p2 mod q = ... = pn mod q (2)

, written as:
p1 ≡ p2 ≡ ... ≡ pn (mod q). (3)

It’s easy to see that ∀p ∈ Z we have p ≡ (p mod q)( mod q)

Lemma 1. If ∀q ∈ Z\{0}, p1, p2, ..., pn ∈ Z and r1, r2, ..., rn ∈ Z satisfying pi ≡ ri mod q
for all i ∈ [n], we have

n∏
i=1

pi ≡
n∏

i=1

ri (mod q). (4)

Proof. By the definition of congruence, we have:

n∏
i=1

pi ≡
n∏

i=1

(pi mod q) ≡
n∏

i=1

(ri mod q) ≡
n∏

i=1

ri (mod q) (5)

3.2 Greatest Common Divisor

Definition 5. Given p, q ∈ Z : (p ̸= 0) ∨ (q ̸= 0),

gcd(p, q) := max{t : t ∈ Z, t|p, t|q}, (6)

which represents the greatest common divisor between p and q.

It’s easy to see that gcd(p, 0) = p.

Theorem 1. ∀p ∈ Z, q ∈ Z\{0},

gcd(p, q) = gcd(p mod q, q). (7)

This is commonly known as Euclidean algorithm.

4
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Proof. By the analysis below:

t|p ∧ t|q
⇔∃a, b ∈ Z s.t. at = p ∧ bt = q

⇔∃a, b ∈ Z s.t. (a− ⌊p
q
⌋b)t = p mod q ∧ bt = q

⇔∃a′, b ∈ Z s.t. a′t = p mod q ∧ bt = q

⇔t|(p mod q) ∧ t|q

we can see that the the set of common divisors of (p, q) and (p mod q, q) are the same.
Hence, gcd(p, q) = gcd(p mod q, q) by the definition of gcd.

The Euclidean algorithm proposed in 1844 runs like this [Sha94]:

f(p, q)⇒
{

output p, q = 0
f(q, p mod q), otherwise

The correctness comes of Euclidean algorithm from gcd(p, 0) = p and Theorem 1.

3.3 Bézout’s Lemma

Bézout’s Lemma is proposed in 1779 [Béz79].

Lemma 2. Suppose a, b ∈ Z with (a ̸= 0)∨ (b ̸= 0). A := {xa+ yb : x, y ∈ Z}, ∃!q ∈ A such
that

∀p ∈ A, q|p. (8)

Proof.
Define A as A(a, b) := {xa+ yb : x, y ∈ Z}. From the equations below

x(a mod b) + yb = x(a− ⌊a
b
⌋ · b) + yb = xa+ (y − x⌊a

b
⌋)b

y′=y−x⌊a
b
⌋

= xa+ y′b,

we can conclude that A(a mod b, b) = A(a, b). Then, we apply the same technique
from Euclidean algorithm, obtaining the fact that A(a, b) = A(gcd(a, b), 0). Now for
A = A(gcd(a, b), 0), it’s easy to see that gcd(a, b) is the only q satisfying ∀p ∈ A, q|p.

Lemma 3. Given a, b ∈ Z with (a ̸= 0) ∨ (b ̸= 0), ∃x, y ∈ Z such that

gcd(a, b) = xa+ yb. (9)

Proof. By Lemma 2, gcd(a, b) ∈ A(a, b) = {xa+ yb : x, y ∈ Z}.

5
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3.4 Group Theory

The group theory can be found in [Cay54].

Definition 6. A set G with a binary operation "·" is an algebraic structure, if it is closure,
i.e., ∀a, b ∈ G, a · b ∈ G.

By default, we consider this binary operation as multiplication and omit the multiplica-
tion symbol "·" during computation.

Definition 7. An algebraic structure G is a semigroup, if it has associative property, i.e.,
∀a, b, c ∈ G, (ab)c = a(bc).

Definition 8. A semigroup G is a monoid, if it has an identity element, denoted as e, such
that ∀a ∈ G, ae = ea = a.

When the binary operation is "+", we commonly refer to this element as the zero element.

Definition 9. A monoid G is a group, if any elements of G has an inverse element, i.e.,
∀a ∈ G, ∃b ∈ G, such that ab = ba = e.

Lemma 4. Uniqueness of an Inverse: ∀a ∈ G, ∃!b ∈ G, such that ab = ba = e, if G is a
group.

Proof. Giving a group G, ∀a ∈ G, ∃b, c ∈ G such that ab = ba = e, ac = ca = e, and then

b = be = b(ac) = (ba)c = ec = c. (10)

Lemma 5. Uniqueness of Operation: ∀a ∈ G, ∃!b ∈ G, such that ab = c, if G is a group.

Proof. Giving a group G, ∀a ∈ G, ∃b, c, d ∈ G such that ab = ba = e, ac = ad, and then

c = ec = bac = bad = ed = d. (11)

Definition 10. Given a group G, the order of G, denoted by |G|, is the number of elements
in the group. This is either a finite number or is infinite.

3.5 Exponential Notation

Definition 11. ∀g ∈ G, g0 = e.

Definition 12. ∀g ∈ G, gg−1 = g−1g = e.

Definition 13. ∀g ∈ G, ∀n ∈ Z, ∃r ∈ {−1, 1} such that n = r|n|, gn = gr|n| = gr....gr︸ ︷︷ ︸
|n|

.

Lemma 6. ∀g ∈ G, ∀n,m ∈ Z, gngm = gn+m.

6
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Proof.
1. ∀n ∈ Z,m = 0⇒ gng0 = gne = gn, and vice versa.
2. ∀n,m ∈ Z, ∃r, s ∈ {−1, 1} such that n = r|n|,m = s|m| and then

gngm = gr|n|gs|m| = gr....gr︸ ︷︷ ︸
|n|

gs....gs︸ ︷︷ ︸
|m|

= gr|n|+s|m| == gn+m. (12)

Lemma 7. ∀g ∈ G, ∀n,m ∈ Z, gnm = (gn)m.

Proof.
1. g−1(g−1)−1 = e = g−1g ⇒ (g−1)−1 = g ⇒ (g−1)−1 = g(−1)·(−1)

2. ∀n,m ∈ Z, ∃r, s ∈ {−1, 1} such that n = r|n|,m = s|m| and then

gnm = grs|n||m| = grs....grs︸ ︷︷ ︸
|n||m|

= (gr....gr)s︸ ︷︷ ︸
|n|︸ ︷︷ ︸
|m|

= (gr|n|)s|m| = (gn)m

(13)

3.6 Subgroup

Definition 14. Let H be a subset of group G, we say that H is a subgroup iff H forms a
group with the operation in G, denoted as H ≤ G.

Definition 15. Let H ≤ G, if g ∈ G:

• The right coset of H generated by g is Hg = {hg : h ∈ H}.

• The left coset of H generated by g is gH = {gh : h ∈ H}.

Definition 16. A set H1H2 := {ab : a ∈ H1, b ∈ H2} is the product of subgroup if ∀H1, H2 ≤
G, which does not need to be a subgroup of G.

Definition 17. Let H ≤ G. H is a normal subgroup of G if any of the following holds:

• cHc−1 ⊆ H for all c ∈ G.

• cHc−1 = H for all c ∈ G.

• cH = Hc for all c ∈ G.

• Every left coset of H in G is also a right coset.

• Every right coset of H in G is also a left coset.

Written as H ⊴G.

7
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Definition 18. if H ⊴G, the quotient group G
H

is defined as G
H

:= {aH : a ∈ G}.

Lemma 8. ∀H ≤ G,∀a ∈ G, aH or Ha is a group if and only if aH = Ha = H.

Proof.
1. Sufficiency. ∀H ≤ G ⇒ e ∈ H ⇒ ∀a ∈ G, a = ae ∈ aH. Since aH is a group,

e ∈ aH ⇒ aa−1 ∈ aH ⇒ a−1 ∈ H. Since H is a group, a−1 ∈ H ⇒ a ∈ H ⇒ ∀b ∈
H, ab, ba ∈ H ⇒ aH = Ha = H.

2. Necessity. ∀H ≤ G,∀a ∈ G, a ∈ H. Since H is a group, aH = Ha = H is a group.

Lemma 9. ∀H ≤ G,∀a ∈ G, |aH| = |H|.

Proof. ∀H ≤ G, ∀a ∈ G,∃b, c ∈ H such that b ̸= c,

b, c ∈ G⇒ ab ̸= ac, (14)

due to the uniqueness of group operation (Lemma 5). Thus, |aH| = |H|.

Lemma 10. ∀H ≤ G,G =
⋃
a∈G

aH =
⋃
a∈G

Ha.

Proof. ∀H ≤ G ⇒ e ∈ H ⇒ ∀a ∈ G, a ∈ aH ⇒ {a} ⊆ aH ⇒ G =
⋃
t

{t} ⊆
⋃
t∈G

tH. Due

to closure of G, ∀b ∈ aH ⇒ b ∈ G ⇒
⋃
t∈G

tH ⊆ G. Finally, G =
⋃
t∈G

tH and similarly

G =
⋃
t∈G

Ht

Lemma 11. ∀H ≤ G,∀a, b ∈ G, such that

aH ∩ bH ̸= ∅ ⇔ aH = bH. (15)

Proof.
1. Necessity. aH = bH ⇒ aH ∩ bH = aH ∩ aH = aH ̸= ∅.
2. Sufficiency. aH ∩ bH ̸= ∅ ⇒ ∃x ∈ aH ∩ bH. ∃h1, h2 ∈ H, such that x = ah1 = bh2,

which implies that
b = ah1h

−1
2 , a−1b = h1h

−1
2 . (16)

Since H is a group, ∀h ∈ H ⇒ hH = H. Thus, bH = ah1h
−1
2 H = a(h1(h

−1
2 H)) = aH

Theorem 2. Lagrange’s theorem: ∀H ≤ G,

|G| = [G,H]|H|. (17)

where [G,H] is the number of left cosets of H in G [Lag71].

Proof. By Lemma 11. ∀F1, F2 ∈ G
H

, such that F1 ̸= F2,

F1 ∩ F2 = ∅ ⇒ |F1 ∪ F2| = |F1|+ |F2|. (18)

Then, we have

|G| =

∣∣∣∣∣∣
⋃

Fi∈G
H

Fi

∣∣∣∣∣∣ =
∑
Fi∈G

H

|Fi|, (19)

8
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where |Fi| = |H| due to the uniqueness of group operation (Lemma 5), so that

|G| =
∑
Fi∈G

H

|H| = |G
H
||H| = [G,H]|H| (20)

3.7 Generating Group

Definition 19. ∀g ∈ G, {gi|i ∈ Z} is the generating set of G, denoted as ⟨g⟩, where g is the
generator of the generated set.

Lemma 12. ∀g ∈ G, ⟨g⟩ ⊆ G.

Proof. ∀a ∈ ⟨g⟩, ∃n ∈ Z such that
a = gn. (21)

Since G is closed, gn ∈ G⇒ a ∈ G.

Lemma 13. ∀g ∈ G, ∀a, b ∈ ⟨g⟩, ab ∈ ⟨g⟩.

Proof. ∀a, b ∈ ⟨g⟩, ∃n,m ∈ Z such that a = gn, b = gm, and then

n+m ∈ Z⇒ ab = gngm = gn+m ∈ ⟨g⟩ . (22)

Lemma 14. ∀g ∈ G, ∀a, b, c ∈ ⟨g⟩, abc = a(bc).

Proof. ∀a, b, c ∈ ⟨g⟩, ∃n,m, l ∈ Z such that a = gn, b = gm, c = gl, and then

abc = gngmgl = gn+m+l = gn+(m+l) = gn(gmgl) = a(bc). (23)

Lemma 15. ∀g ∈ G, ∃e ∈ ⟨g⟩ such that ∀a ∈ ⟨g⟩ , ea = ae = a.

Proof. ∀n ∈ Z, we have g0, gn ∈ ⟨g⟩ and then, by Lemma 6,

g0, gn ∈ G⇒ g0gn = gn, gng0 = gn. (24)

Lemma 16. ∀g ∈ G, ∀a ∈ ⟨g⟩, ∃b ∈ ⟨g⟩ such that ab = e.

Proof. ∀n ∈ Z, ∃m ∈ Z such that n+m = 0 and then, by Lemma 6,

gngm = gn+m = g0 = e. (25)

Theorem 3. ∀g ∈ G, ⟨g⟩ is a group.

Proof. According to Lemma 13, Lemma 14 Lemma 15, and Lemma 16, ⟨g⟩ satisfies Defini-
tion 6, Definition 7, Definition 8, Definition 9, respectively.

Theorem 4. ∀g ∈ G, ⟨g⟩ ≤ G.

Proof. According to Theorem 3 and Lemma 12, ⟨g⟩ satisfies Definition 14.

9
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3.8 Finite Group

Definition 20. A group G is a finite group, if |G| ∈ Z+.

Lemma 17. ∀g ∈ G, ⟨g⟩ is a finite group, if G is a finite group.

Proof. ∀g ∈ G, ⟨g⟩ ≤ G⇒ ⟨g⟩ ⊆ G⇒ | ⟨g⟩ | ≤ |G| and then, G ∈ Z+ ⇒ | ⟨g⟩ | ∈ Z+

Lemma 18. ∀g ∈ G, ∃n ∈ Z+ such that gn = e, if G is a finite group.

Proof. Since G is closed and finite, ∃i, n ∈ Z+ such that gi repeats in a sequence of expo-
nential g:

< g0, g1, ..., gi, ..., gi−1, gi, ... > (26)

= < g0, g1, ..., gi+(1−1),..., gi+(n−1),gi, ... >, (27)

where gi−1 = gi+(n−1) = gi−1+n = gi−1gn ⇒ gn = e.

Theorem 5. Cyclic group: ∀g ∈ G, ⟨g⟩ is cyclic, i.e., g|⟨g⟩| = e, if ⟨g⟩ is a finite group.

Proof. ∀g ∈ G, n := min{t : t ∈ Z+, gt = e}. In this context, ∀m ∈ Z,∃k, r ∈ Z, 0 ≤ r < n,
such that m = kn+ r, and then

gm = gkn+r = gkngr = egr = gr. (28)

Here, 0 ≤ r < n, which implies that there are n elements in ⟨g⟩, i.e, | ⟨g⟩ | = n ⇒ g|⟨g⟩| =
gn = e.

Theorem 6. ∀g ∈ G, g|G| = e, if G is a finite group.

Proof. ∀g ∈ G:
1. ⟨g⟩ is a finite group and g|⟨g⟩| = e by Lemma 17 and Theorem 5;
2. ⟨g⟩ ≤ G by Theorem 4.
By Lagrange’s Theorem (Theorem 2), therefore, ∃k ∈ Z+ such that

|G| = k| ⟨g⟩ |, (29)

where k = [G, ⟨g⟩] is the number of coset of ⟨g⟩ on G. Sequentially, we have g|G| = gk|⟨g⟩| =
(g|⟨g⟩|)k = ek = e and proves our claim.

Corollary 1. ∀H ≤ G are finite groups, if G is a finite group.

Proof. By Lagrange’s Theorem (Theorem 2), therefore, ∃k ∈ Z+ such that

|G| = k|H|, (30)

where k = [G,H] is the number of coset of H on G. Thus, |H| is not infinite when |G| ∈ Z+

and H is a finite group.

Theorem 7. ∀H ≤ G, ∀a ∈ H, a|G| = e, if G is a finite group.

10
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Proof. By Theorem 6, ∀a ∈ H,
a ∈ G⇒ a|G| = e. (31)

Corollary 2. Given a finite group G, ∀n ∈ Z, gn = gn mod |G|.

Proof. ∀n ∈ Z, ∃k, r ∈ Z, 0 ≤ r < |G|, such that

n = k|G|+ r ⇒ gn = gk|G|+r = gk|G|gr = egr = gr, (32)

where r = n mod |G| ⇒ gn = gn mod |G|.

3.9 Abelian Group

Definition 21. A group G is an Abelian group, if it satisfies commutativity: ∀a, b ∈ G, the
equation ab = ba holds.

Corollary 3. ∀H ≤ G are Abelian groups, if G is an Abelian group.

Proof. ∀a, b ∈ H, since H is a subgroup and therefore closed under the group operation, it
follows that:

ab, ba ∈ H. (33)

Moreover, since H is a subset of the Abelian group G, we have

a, b ∈ G⇒ ab = ba. (34)

This verifies that H is an Abelian group.

Corollary 4. ∀H1, H2 ≤ G, H1H2 is an Abelian group, if G is an Abelian group.

Proof. ∀a, b ∈ H1H2, ∃a1, b1 ∈ H1, a2, b2 ∈ H2 such that a = a1a2, b = b1b2 and then, by
commutativity of G, we have

ab = a1a2b1b2 = (a1b1)(a2b2) ∈ H1H2, (35)

which implies the property of closure holds. Moreover, H1H2 inherits the associative prop-
erty, the commutativite property, and the identity element from G. Next, let’s prove the
invertibility of all elements in H1H2.
∀a ∈ H1H2, ∃a1, b1 ∈ H1, a2, b2 ∈ H2 such that a = a1a2 and a1b1 = e, a2b2 = e and then,

by commutativity of G, we have

ab = a1a2b1b2 = (a1b1)(a2b2) = ee = e ∈ H1H2, (36)

and thus we prove our claim.

11
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3.10 Modulo Multiplication Group

Definition 22. ∀x, y, n ∈ Z+,

Z∗
n := ({t : t ∈ Z+, t < n, gcd(t, n) = 1}, ∗), (37)

where x ∗ y := x · y mod n.

Lemma 19. Z∗
n is a closure algebraic structure.

Proof. ∀a, b ∈ Z∗
n,

c := a ∗ b = ab mod n. (38)

Obviously, c ∈ Z and c < n. To show closure, we must demonstrate that gcd(c, n) = 1. By
Bézout’s Lemma (see in Sec. 3.3), ∃x1, x2, y1, y2 ∈ Z, such that

x1a+ y1n = 1, x2b+ y2n = 1. (39)

Multiplying these two equations together yields:

(x1x2)ab+ (x1a+ x2b+ y1y2n)n = 1, (40)

which implies gcd(ab, n) = 1 by virtue of Bézout’s Lemma. Applying the properties of the
Euclidean algorithm (Theorem 1):

gcd(c, n) = gcd(ab mod n, n) = gcd(ab, n) = 1, (41)

we prove our claims.

Lemma 20. Z∗
n is associative.

Proof. ∀a, b, c ∈ Z,

(a ∗ b) ∗ c =(ab mod n)c mod n

=abc mod n

=a(bc mod n) mod n = a ∗ (b ∗ c)
(42)

Definition 23. The identity element of Z∗
n is 1 mod n.

Lemma 21. Every element of Z∗
n has an inverse element: ∀a ∈ Z∗

n,∃a−1 ∈ Z∗
n, such that

a ∗ a−1 = 1. (43)

Proof. ∀n ∈ Z, ∀a ∈ Z∗
n, we have

gcd(a, n) = 1. (44)

According to 3.3, therefore, ∃b, k ∈ Z, such that

ab+ kn = gcd(a, n) = 1, (45)

which implies
ab mod n = 1⇒ a ∗ b = 1, (46)

where b is the inverse of a, i.e. a−1 = b.

12
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Lemma 22. Z∗
n is commutativite.

Proof. ∀x, y ∈ Z, xy mod n = yx mod n⇒ x ∗ y = y ∗ x.

Theorem 8. Z∗
n is an Abelian group.

Proof. According to Lemma 19, Lemma 20, Definition 23, Lemma 21, and Lemma 22, Z∗
n

satisfies Definition 6, Definition 7, Definition 8, Definition 9 and Definition 21, respectively.

Theorem 9. Z∗
n is a finite group.

Proof. |Z∗
n| < n, which satisfies Definition 20.

Corollary 5. ∀a ∈ Z∗
n, ∀i ∈ Z, ai = ai mod |Z∗

n|.

Proof. The claim is proved by Theorem 9 and Corollary 2.

Definition 24. Euler’s totient function, denoted by φ(n), is the number of positive integers
less than n that are coprime to n, i.e., φ(n) := |Z∗

n|.

Corollary 6. ∃p1, ..., pn ∈ Z+ such that gcd(pi, pj) = 1 where i, j = 1, ..., n and i ̸= j and
then

φ(p1...pn) =
n∏

i=1

φ(pi). (47)

Proof. Giving i, j ∈ Z+ with i ̸= j, let a ∈ Z with 1 ≤ a ≤ pipj and gcd(a, pipj) = 1,
∃x, y ∈ Z such that

xa+ ypipj = 1⇒ gcd(a, pi) = 1 ∧ gcd(a, pj) = 1. (48)

Let P̄t := {p : p ∈ Z, 1 ≤ p ≤ pipj, gcd(p, pt) ̸= 1} where t = i, j, then we have

P̄j = {pipj} ⇒ |P̄i ∪ P̄j| = |P̄i|+ |P̄j| − |P̄i ∩ P̄j| = pi + pj − 1, (49)

and thus φ(pipj) = pipj−|P̄i∪ P̄j| = pipj− pi− pj +1 = (pi− 1)(pj− 1) = φ(pi)φ(pj), which
implies that φ is multiplicative when gcd(pi, pj) = 1. Generally, the equation

φ(p1...pn) = φ(p1...pn−1)φ(pn) = φ(p1...pn−2)φ(pn−1)φ(pn) = ... =
n∏

i=1

φ(pi) (50)

holds if any two number pi and pj are coprime.

Corollary 7. ∀p ∈ P,∀k ∈ Z+,

φ(pk) = pk−1(p− 1). (51)

Proof. let a ∈ Z with 1 ≤ a ≤ pk and gcd(a, pk) = 1, ∃x, y ∈ Z such that

xa+ ypk−1p = 1⇒ gcd(a, p) = 1. (52)

So that we have P := {p, 2p, ..., pk−1p} as the set of all of a, where |P | = pk−1 ⇒ φ(pk) =
pk − pk−1 = pk−1(p− 1).

13
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Corollary 8. ∀p1, ..., pn ∈ P,

φ(pk11 , ..., pknn ) =
n∏

i=1

pki−1
i (pi − 1). (53)

Proof. Let pi, pj ∈ P with gcd(pi, pj) = 1, i, j = 1, ..., n, i ̸= j, ∃x, y ∈ Z such that

xpi + ypj = 1⇒ x(pi)p
ki
i + y(pj)p

kj
j = 1, (54)

where x(pi), y(pj) are polynomials of pi, pj, respectively, which implies that gcd(pkii , p
kj
j ) = 1.

By Corollary 6, φ(pk11 , ..., pknn ) =
∏n

i=1 φ(p
ki
i ) holds and since Corollary 7, it follows that

φ(pk11 , ..., pknn ) =
∏n

i=1 φ(p
ki
i ) =

∏n
i=1 p

ki−1
i (pi − 1).

Theorem 10. Euler’s theorem: ∀a, n ∈ Z+ such that gcd(a, n) = 1,

aφ(n) = 1 (mod n). (55)

Proof. ∀a, n ∈ Z+, ∃k, r ∈ Z such that 0 ≤ r < n and then

a = kn+ r, (56)

where gcd(r, n) = 1 due to Bézout’s Lemma 3.3, which implies that r ∈ Z∗
n. By Definition 24

and Corollary 5, we know that
rφ(n) = r|Z

∗
n| = 1. (57)

Applying a lemma regarding multiplication modulo ( Lemma 1), it follows that

aφ(n) = (kn+ r)φ(n) = rφ(n) (mod n) = 1 (mod n). (58)

4 Hard problems/assumptions in PKE
In this subsection we mainly focus on 4 assumptions that are used in PKE: Decisional
Diffie–Hellman (DDH for short) assumption, Discrete logarithm(DL for short) assumption,
RSA assumption, and Factorization assumption.

DDH assumption [Bon98]: Consider a cyclic group G with prime order q, and a gen-
erator g. The DDH assumption states that gab is indistinguishable from a random element
gc of G. The formal definition is as follows:

Definition 25.
(G, q, g, ga, gb, gab)

c
≈ (G, g, q, ga, gb, gc)

where (G, q, g) is the group description, a, b, c $← Zq, and
c
≈ states for computational indis-

tinguishability in |q| = λ.

DL assumption [BG04]: Consider a cyclic group G with order q, and a generator g.
The DL assumption states that given a random element ga ∈ G, it’s hard to output the
exponent a.

14
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Definition 26. ∀ PPT A, the probability

Pr[A(G, q, g, ga) = a|a $← Zq]

is negiligible in |q|, where (G, q, g) is the group description for a random group with prime
order |q| = λ.

Factorization assumption [CP05]: Consider N where N = pq, and p, q are λ-bit
primes. The factorization assumption states that given N , it’s hard to output p, q such that
N = pq.

Definition 27. ∀ PPT A, the probability

Pr[A(N) = (p, q)|p, q are λ-bit primes]

is negiligible in λ.

RSA assumption [BV98]: Given N , an integer e > 0 that is prime to ϕ(N), and an
element y ∈ Z∗

N where N = pq, p, q are λ-bit primes, and ϕ(N) = (p− 1)(q− 1), it’s hard to
find x such that xe = y mod N .

Definition 28. ∀ PPT A, the probability

Pr[A(N, e, y) = x|x $← Z∗
N ]

is negiligible in λ.

5 Diffie-Hellman Key Exchange
The Diffie-Hellman key exchange is a cryptographic protocol that enables two parties to
establish a shared secret key over an insecure communication channel. This groundbreaking
method, invented by Whitfield Diffie and Martin Hellman in 1976, revolutionized the field
of cryptography [DH22]. In a Diffie-Hellman key exchange, both parties involved generate
public-private key pairs and exchange their public keys. Without revealing their private keys,
they can jointly compute a shared secret which can then be used as the basis for encrypting
subsequent communications.

5.1 Method

The Diffie-Hellman key exchange process involves several steps to securely establish a shared
secret between two parties, let’s call them Alice and Bob. Here’s a detailed description of
the process:

1. Both Alice and Bob agree on public parameters (q, g), where q is a chosen order used
to define a modulo multiplication group Z∗

q and g ∈ Z∗
q is the generator for a subgroup, ⟨g⟩,

of g ∈ Z∗
q.

2. Alice generates a random private integer 1 < a < |Z∗
q|, computes A = ga, and keeps a

secret.
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3. Alice sends (q, g, a) to Bob.
4. Bob receives (q, g, a) and generates his own random private integer 1 < b < |Z∗

q|,
computes B = gb, and also keeps b secret. Then, Bob sends B to Alice and computes shared
key by K = Ab = gab.

5. Alice receives B and computes the shared key by K = Ba = gba = gab (by the
commutativity of Z∗

p, see in Lemma 22).
The shared secret can now be used as the key for a symmetric encryption algorithm,

allowing both Alice and Bob to communicate securely, even though the channel they use to
exchange messages may be eavesdropped upon.

5.2 Correctness and security

Correctness is quite straightforward since both Alice and Bob obtain the same gab as the
symmetric key.

the DL assumption ensures that only Alice has the value of a, and only Bob has the value
of b.

Furthermore, for any other users, the DDH assumption ensures that the key gab appears
as a random group element in their view; even if they can obtain results encrypted with this
key, they will not learn any information about the message unless Alice or Bob voluntarily
discloses it.

6 Public key encryption
Public key encryption(PKE for short), or asymmetric cryptography, is a cryptographic sys-
tem that uses two different keys for encrypting and decrypting data:

• Public Key: This key is made publicly available to anyone who wants to send a secure
message to the key owner. It is used to encrypt data, meaning anyone with the public
key can encrypt information, but they cannot decrypt it.

• Private Key: This key remains confidential and is only known by the owner. It is used
to decrypt data that has been encrypted with the matching public key.

In symmetric encryption, the same key is used for both encrypting and decrypting the data.
This poses a significant challenge in securely distributing the key to the intended recipient
without interception by unauthorized parties. PKE eliminates this problem because the
public key can be openly distributed, while the private key remains secure with the owner.

A PKE scheme composes mainly 3 algorithms:

• KeyGen(λ): Input the security parameter λ ∈ N, output a secret-public key pair
(sk, pk) ∈ SK × PK. The public key is subsequently made public, while the private
key is retained only by the creator of the key pair.

• Enc(pk,M): Input the public key pk ∈ PK and a plaintext M ∈M, output a cipher-
text C ∈ C according to M and pk.

16
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• Dec(sk, C): Input the secret key skSK and a ciphertext C ∈ C, output M s.t. C is a
correct ciphertext generated by Enc(pk,M).

Where PK, SK,M and C represents the public key space, the private key space, the plaintext
message space and the ciphertext space. In subsequent discussions, we’ll omit λ and treat it
as a default parameter.

6.1 Defining correctness and security of PKE

To ensure the correctness of PKE, we want to guarantee that a message, after being en-
crypted into ciphertext using the public key, will yield the same original message when the
corresponding ciphertext is decrypted using the private key. In a formal description:

Definition 29. Correctness:

∀M ∈M,Pr[Dec(sk,Enc(pk,M)) = M ] = 1

where (sk, pk)← KeyGen.

The security of PKE aims to ensure that the ciphertext does not reveal any information
about the plaintext message, not even a single bit. We use the following experiment to
capture the leakage of 1-bit information: This experiment requires the adversary to determine

Figure 2: IND-CPA experiment

which of the two chosen plaintext messages corresponds to the encryption, thus representing
1 bit of information. If 1 bit is not leaked, then the adversary only has a 1/2 probability of
making the correct determination. Therefore, our formal definition of security is as follows:

Definition 30. The PKE scheme Σ = (KeyGen,Enc,Dec) the is IND-CPA-secure if ∀ PPT
adversary A, the IND-CPA-advantage (IND-CPA refers to indistinguishability under chosen
plaintext attack) of A defined as

Advind-cpa
Σ = |2 · Pr[Expind-cpa

Σ (A)⇒ 1]− 1|

is negligible.
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6.2 ElGamal Encryption

ElGamal Encryption, a public-key cryptosystem developed by Taher Elgamal in 1985, is a
fundamental cryptographic technique that provides secure data transmission based on the
Diffie-Hellman key exchange [ElG85]. It employs a non-secretive key generation process
where each participant generates and publicly shares a key pair consisting of a public key
and a private key. The algorithm’s security relies on the difficulty of the discrete logarithm
problem, which makes it computationally infeasible for an attacker to derive the private key
from the public one.

In contrast to symmetric encryption methods where the same secret key is used for both
encryption and decryption, ElGamal Encryption uses different keys for these processes. A
sender can encrypt messages using the recipient’s public key, while the recipient can only de-
crypt them with their corresponding private key. This feature enables secure communication
between parties without requiring a pre-shared secret, thus facilitating secure information
exchange over insecure channels.

ElGamal Encryption also has the advantage of being malleable, meaning it allows op-
erations like homomorphic addition of ciphertexts. However, its primary use is often as a
building block for hybrid encryption systems, combining the efficiency of symmetric ciphers
with the key distribution benefits of public-key cryptography.

6.2.1 Method

The ElGamal Encryption is a public-key cryptosystem. It has few public parameters:

1 Zp: prime field with modular p satisfying |q| = poly(λ).

2 Gq: a cyclic subgroup of Zp with order q satisfying |q| = λ.

3 g: the multiplicative generator of Gq.

Now we formally describe the algorithms (KeyGen,Enc,Dec):

• KeyGen: Output the secret key b← Z∗
q and the public key B = gb.

• Enc(B,M): Input the public key B and a message M ∈ Z∗
q, this algorithm generates

a← Z∗
q, A := ga and K := Ba, then outputs ciphertext (A,C := K ·M).

• Dec(b, (A,C)): Input the secret key b and ciphertext C, this algorithm generates K :=
Ab and outputs M ′ := C/K.

6.2.2 Correctness and security

Correctness:

C/K = (Ba ·M)/Ab = (gba ·M)/gab = M

Security:
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Theorem 11. ElGamal Encryption Scheme is IND-CPA under DDH assumption.

Proof. Suppose that there is a PPT adversary A that can break the ElGamal Encryption
Scheme in the IND-CPA security model with non-negligible advantage ε, we can construct
a PPT simulator B that can solve the DDH problem with non-negligible advantage. Give a
DDH problem instance (g, ga, gb, T ), B runs A as the subroutine and works as follows:

• SetUp. B sets B = ga and sends it to A.

• Challenge. Upon receiving two different messages M0,M1 fromA, B chooses b $← {0, 1}
sets the challenge ciphertext C∗ = (gb, T ·Mb), and sends C∗ to A.

• Guess. A outputs a guess b′ of b. If b′ = b, B outputs 1 to indicate that T = gab.
Otherwise, B outputs 0 to indicate that T = gc.

If T = gab, C∗ is a well-formed ciphertext under ElGamal Encryption. If T = gc, C∗ contains
no information of Mb. Thus, the advantage of B solving the DDH problem is as follows,

AdvB = Pr[T = gab]Pr[b′ = b|T = gab] + Pr[T = gc]Pr[b′ ̸= b|T = gc]− 1

2

= (ε+
1

2
) · 1

2
+

1

2
· 1
2
− 1

2

=
ε

2

which is non-negligible.

6.3 Rivest–Shamir–Adlema Algorithm

Rivest-Shamir-Adleman (RSA) is a widely-used public-key cryptography algorithm, which
was developed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman [BB79]. It forms
the backbone of numerous security applications and protocols, including secure data trans-
mission, digital signatures, and user authentication. The RSA algorithm is based on the
mathematical complexity of factoring large integers, particularly those that are products of
two large prime numbers. This inherent difficulty ensures the confidentiality and integrity
of information exchanged over otherwise insecure channels.

In an RSA system, each participant has a pair of keys: a public key for encryption and a
private key for decryption. The public key can be freely shared with others, while the private
key must remain confidential to its owner. To encrypt a message, one uses the recipient’s
public key; only the holder of the corresponding private key can decrypt it. Conversely, if
a user wants to digitally sign a document, they would use their own private key, allowing
anyone with their public key to verify the authenticity of the signature.

The strength of RSA lies in its asymmetric nature, where the computational ease of
performing operations with the keys is highly unbalanced – encryption using the public key
is relatively straightforward, but attempting to derive the private key from the public key or
ciphertext without proper knowledge is considered computationally infeasible with current
technology, especially when sufficiently large key sizes are used. As such, RSA remains
a cornerstone of modern cryptography, ensuring the confidentiality, authenticity, and non-
repudiation of electronic communications across the globe.
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6.3.1 Method

The textbook RSA encryption consists of 3 algorithms:

• KeyGen: Generate primes p and q s.t. |p| = |q| = λ. Then let n := p ·q. And randomly
select e and d that are co-prime with ϕ(n) = (p− 1)(q − 1) and inverse to each other
with modulo ϕ(n)(that is, ed ≡ 1( mod ϕ(n))). Finally output the secret key d and
the public key (n, e).

• Enc(e,M): Input the public key e and a message M ∈ Z∗
n, output the ciphertext

C := M e.

• Dec(d, C): Input the secret key d and a ciphertext M ∈ Z∗
n, output the plaintext

message M ′ := Cd.

Note that all multiplication operations are performed within the group Z∗
n.

6.3.2 Correctness and security

Correctness: By Euler’s theorem 10 we know that M ′ = Cd = M ed = M ed mod ϕ(n) = M .
Hence, the correctness holds.

Security: The IND-CPA security doesn’t hold now since the textbook RSA encryption is
deterministic, that is, the adversary A can simply pass Expind-cpa

textbool RSA by output the boolean
value C∗ ?

= M∗
1
e. Now we can only prove it to be a one-way trapdoor permutation directly

by RSA assumption, where the trapdoor is d in textbook RSA. To modify the textbook RSA
encryption into a IND-CPA scheme, in each encryption we can pad the λ-bit message M
with a λ-bit randomness r s.t. r||M ∈ Z∗

n, and output Enc(e, r||M). Later in decryption
we output the last λ bits of Dec(d, C). The random number r ensures that the encrypted
results are uniformly distributed among approximately 2λ numbers but does not affect the
correctness of the final decryption. Therefore, the modified RSA encryption is IND-CPA
secure and correct.

7 Digital Signature
Digital signatures are a cryptographic mechanism used to verify the authenticity and integrity
of a message, software, or digital document. They are akin to a fingerprint that the sender
of a message can use to sign their information. The concept of digital signatures is based on
public key cryptography, where two keys are used: a private key to create the signature and
a public key that others can use to verify it.

Digital signature schemes are built around three fundamental procedures: Key Genera-
tion, Signing, and Verification. Here’s an overview of each:

• KeyGen: Output a pair of keys (sk, vk)—a private key sk ∈ SK and a corresponding
public key vk ∈ VK—for the user. the private key is kept secret by the user to
create digital signatures. While the public key is shared with others for them to verify
signatures made by the private key.
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• Sign(sk,M): Input the secret key sk ∈ SK a message MM, outputs a digital signature
σσ.

• Vrfy(vk,M, σ): Input the public key vk ∈ VK, a message MM, and a signature
σσ, outputs 0/1 to show whether σ is a valid signature of m under the signing key
corresponding to vk.

Where VK, SK,M and C represents the public key space, the private key space, the plaintext
message space and the ciphertext space.

7.1 Comparing to MAC

If we only want to provide integrity of messages, another cryptographic tool, Message Au-
thentication Code(MAC), can also help solve this issue. MAC is a short piece of information
used to authenticate a message and to provide integrity and authenticity assurances on the
message based on symmetric cryptography, and consisting 3 phases:

• The sender inputs the message and the symmetric key into the MAC algorithm, which
outputs a MAC value. This MAC value is based on the message content and the
symmetric key and is used to verify the message, not to conceal its content.

• The original message and the generated MAC value are then sent together to the
recipient.

• Upon receiving the message and MAC value, the recipient uses the same symmetric
key and the same MAC algorithm to process the received message. If the MAC value
calculated by the recipient matches the MAC value sent by the sender, the recipient
can confirm that the message has not been altered during transmission and that it was
indeed sent by the holder of the symmetric key.

The MAC mechanism does have certain weaknesses, owing to its nature as a symmetric
encryption technique, and thus the vulnerabilities associated with symmetric encryption also
appear in MACs. MACs must ensure that the secret key used by both parties is the same in
order to maintain their correctness. Furthermore, if one party’s secret key is compromised,
then that secret key can no longer guarantee that the message is from a trusted sender, nor
ensure the message’s integrity.

Compared to MACs, digital signatures based on public key cryptography have the fol-
lowing advantages:

• Non-repudiation: Digital signatures provide non-repudiation, which means the
sender cannot deny having signed the document. This is because the digital signa-
ture is created using the sender’s private key, which should be uniquely possessed by
the sender.

• Public Verification: Digital signatures can be verified by anyone who has access to
the public key of the sender. This means that the verification process is not limited to
the parties who shared a secret key, as with MACs.
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7.2 Defining correctness and security of Digital Signatures

To ensure the correctness of Digital Signatures, we want to guarantee that a message and its
corresponding valid message generated by Sign algorithm is valid under the Vrfy algorithm.
In a formal description:

Definition 31. Correctness:

∀M ∈M,Pr[Vrfy(vk,M, Sign(sk,M))] = 1

where (sk, vk)← KeyGen.

Before formally defining security, we need to clarify our security requirements for dig-
ital signatures: Adversaries often obtain a collection of messages and their corresponding
signatures in advance, and we do not want adversaries to use this information to obtain a
signature for a new message. This requirement leads us to the following experiment, where
a PPT adversary A holds a vk generated by Σ.KeyGen, and can query a signing oracle SIGN
for any message for polynomial times: We wants A to generate a valid signature with only

Figure 3: UF-CMA experiment

negligible probability. So we define the security like this:

Definition 32. The signature scheme Σ =(KeyGen, Sign, Vrfy) is unforgeable against
chosen-message attacks if ∀ PPT adversary A, the UF-CMA-advantage (UF-CMA refers
to unforgability against chosen-message attacks) of A defined as

Advuf-cma
Σ = Pr[Expuf-cma

Σ ⇒ 1]

is negligible.
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7.3 Textbook RSA signatures

The textbook RSA signature scheme involves several steps to generate keys and en-
crypt/decrypt messages. Below is a detailed description of the process:

1. KeyGen: Nearly the same as the KeyGen for the RSA algorithm. Finally output the
private(signing) key as (n, d) and the public(verifying) key as (n, e).

2. Sign((n, d),M): Input the signing key (n, d) and a message M ∈ Z∗
n, output the

signature σ ← (Md mod n).

3. Vrfy((n, e),M, σ): Input the verifying key (n, e), a message M ∈ Z∗
n, and the signature

σ, output the boolean value σe ?≡M( mod n).

We can find that given the message-signature pairs (M1, σ1) and (M2, σ2) under the same
secret-public key pair (sk, pk), σ1σ2 is a valid signature of M1M2 since:

(σ1σ2)
d ≡ σ1

dσ2
d ≡M1M2( mod n).

Thus, the textbook RSA signature scheme is not secure(violating the definition of unforga-
bility against chosen-message attacks).

However, we can modify the Sign and Vrfy algorithms in textbook RSA signature scheme
using hash-then-sign. And these two algorithm replace the message M with their hash value
H(M), so that the above attack doesn’t work by the property of hash that H(M1)H(M2) ̸≡
H(M1M2)( mod n) with nearly 1 probability. Moreover, we know the hashed RSA signature
scheme is secure if the hash function H is indistinguishable from a perfect random oracle by
the following theorem:

Theorem 12. ∀ PPT UF-CMA adversary A against hashed RSA making qSIGNsk(·) queries,
there is an PPT algorithm B solving the RSA-problem:

Advuf−cma
RSA,H (A) ≤ q ·AdvRSA

n,e (B)

where H is a random oracle.

7.4 Discrete-log-based signatures

Schnorr signatures [Sch91] and ECDSA [JMV01] (Elliptic Curve Digital Signature Algo-
rithm) signatures are cryptographic algorithms used for digital signing and verification.
Schnorr signatures are based on the discrete logarithm problem and random oracle model.
They were invented by Claus Schnorr and are known for their simplicity and efficiency.
ECDSA is a variant of the Digital Signature Algorithm (DSA), which uses elliptic curve
cryptography. However, it has no formal security proof and a more complicated design than
Schnorr signatures. Yet, it’s widely used in many scenarios.
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