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Lecture note 2: Symmetric key cryptography
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In this lecture, we discuss the syntax of symmetric key encryption, its security and con-
structions. As important building blocks, pseudorandom generator (PRG), pseudurandom
function (PRF), and message authenticated code (MAC) are also included. At last, we
introduce the concept of hash functions.

1 Syntax of symmetric key encryption

A symmetric key encryption scheme II consists of three public algorithms (KeyGen, Enc, Dec),
as well as message space M, key space K, and ciphertext speace C.

KeyGen (1*) On input 1%, generate K < K with randomness, and output a pair key (K, K)
as secret keys. Distribute the key to the two parties.

Enc(K, M) This is a probabilistic or deterministic algorithm. On input secret key K and
message M € M, generate and output C' € C as the ciphertext.

Dec(K,C) This is a deterministic algorithm. On input secret key K and the ciphertext
C € C, return the corresponding message M € M or L.

Decryption correctness requires that for all (K, K) < KeyGen(1*), M = Dec(K, Enc(K, M))
holds for m € M. This is known as the perfect correctness. Sometimes, “a small" probability
of decryption error is allowed.

Remark 1. All the algorithms in the encryption schemes are public. The only thing that is
secret is the encryption/decryption key K this is known as the Kerckhoffs” principle.

Remark 2. We leave the problem of distributing/sharing secret key K in the next lecture.

2 Perfect security and one-time pad

Generally, if an encryption is secure against any unbounded adversary, it satisfies perfect
security. Informally, the ciphertext gives nothing about the message. Shannon formally
defined perfect security as follows.
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Definition 1. We say that an encryption scheme II = (KeyGen, Enc, Dec) associated with
message space M s perfectly secret, if for every distribution over M, every m € M, and

every ciphertext ¢ € C,
Pr[M =m | C = ¢] = Pr[M = m)|, (1)

with probability taken over the random choice in KeyGen, and the random coins used by Enc.

A question is whether perfect security is achievable. One-time padding scheme g, =
(KeyGen, Enc, Dec), introduced in the following, achieves the perfect security. Fix an integer
[ and set M =K =C = {0, 1}".

KeyGen (1*) On input 1*, generate K < {0, 1}! and output a pair key (K, K) as secret keys.

Enc(K, M) On input secret key K and message M, generate and output C' = K & M as the
ciphertext.

Dec(K,C) On input secret key K and the ciphertext C, return M = K @ C' as the message.
Theorem 1. One-time pad scheme Iy, is perfectly secret.

Proof. We only need to prove that the one-time padding satisfies equation [I}
At first we have,

Pr[C =c| M =m]=Prim=c® K]

=Pr[K=m®
= Pr[K = c®m] (2)
=

Then, we also have

Pr[C =] = Z Pr[C = ¢|M = m]|Pr[M = m]
meq{0,1}
1
= Z 5 Pr[M =m] according to equation 2] (3)
meq{0,1}
1

Finally, according to Bayes theorem,

PHM =m | C = = UC= C,ﬁ;z}gw =l _
%Pr[M = m)| (4)

= Pr[M =m)].




COMP 6712 Advanced Security and Privacy 2023/24

However, from one-time padding, we can see the key length equal to the message length,
which means in order to encryption [-bit message, [-bit key should be shared before. Actually
this is the limitation of all perfectly secret encryption.

Theorem 2. If IT = (KeyGen, Enc, Dec) is a perfectly secret encryption scheme associated
with message space M and key space IC, we have

K[ = |M].

Proof. We assume || < |M|, and show that II can not be perfectly secret. For a ciphertext
c¢* € C, define
M(c") :={m € M | m = Dec(K, c"), for K € K}.

Since Dec is deterministic, |M(c¢*)| < |K| < |M|. There must exist a m’ from M such that
m' & M(c*) (WOLG, assume the distribution of message is uniform). Thus,

1
OzPr[M:m’|C:c*]7éPr[M:m’]:§,

IT can not be perfectly secret. O

From this theorem, we can see the key length > the message length is the inherent
limitation of perfectly secret encryption.

3 Computational security

We could break the limitation of perfect security by considering security against computa-
tional bounded adversary, rather than unbounded adversary. This makes sense since un-
bounded adversary does not exist in our real-life world. What we are facing is the proba-
bilistic polynomial time (PPT) adversary.

Roughly, we say a scheme is computational secure, if any PPT adversary successfully
breaks the scheme with a “small" probability. But what kind of probability could be taken
as small enough.

Definition 2 (Negligible function). A positive function f : N — R is negligible if for every
positive polynomial p(-) there exists an integer N, such that for all integer x > N,, (or if for
every positive polynomial p(-) and all sufficiently large x), f(x) < ﬁ. We generally denote
an arbitrary negligible function by negl.

Lemma 1. Prove the following properties
1. if negl, and negl, are negligible functions, negl, + negl, is also a negligible function.
2. Assume negl is negligible, so does p(-) - negl for any positive polynomial p(-).

Proof. For every polynomial p(-), 3 Ny, Ny s.t.

negly(n) < V' n> Ny,

1
2p(n)’
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1
neglg(n) < M, Vn> NQ.

Define N & maxz{Ny, No}. Then we have V n > N
1 1 1
negl,(n) + negly(n) < + = .
) e ) < 30y By~ )

For every positive polynomial ¢(-), 3 N s.t. V. n > N

1 1 1
Sn)a) then, p(n) - negl(n) < p(n) - o) =

negl(n) < p(n)q(n n)g(n)  q(n)

Remark 3. % 15 obviously a negligible function, while ﬁ s not.

Definition 3. An encryption scheme 11 is said to be computational secure if for any PPT

adversary A, the probability that A successfully breaks scheme 11 is a negligible function of
input length (or the probability is negligible).

4 IND-eavesdropper security and construction

We do not define what is “successfully breaks" in definition [3] Here, we give more details
about this by introducing “indistinguishably (IND) -eavesdropper security". Roughly, an
adversary successfully breaks the IND-eavesdropper security of a scheme if it can distinguish
which of the two messages (chosen by itself) is encrypted in the ciphertext. Formally it is
defined by the following experiment of scheme IT = (KeyGen, Enc, Dec) between the adversary
and challenger.

Expind=cva( 4)
1. The challenger chooses b < {0, 1} to indicate which message is encrypted
2. The challenger generates (K, K) < KeyGen(1*)
3. Adversary A chooses and sends (M, M;) to the challenger
4. The challenger runs C* = Enc(K, M,) and returns back C*
5. A(C*) returns b as the guess of b

6. Return 1 if b =10/, else 0.

Definition 4 (IND-eav Security). The IND-eav-advantage of an adversary against IND-
eavesdropper security of 11 is defined as

Advin?=em(A) = | Pr[Expit®""(A) = 1] — 1/2].

IT is said to be IND-eva secure if for any PPT adversary, IND-eav-advantage is a negligible
function of .
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4.1 Construction from pseudorandom generator

We first introduce the primitive of pseudorandom generator, then construct IND-eva secure
encryption from pseudorandom generator.

Definition 5 (Pseudorandom generator (PRG)). Let G be a deterministic polynomial time
algorithm takes s € {0,1}" as input and outputs G(s) of length £(n). We say G is a pseudo-
random generator (PRG), if it satisfies

o /(n)>n
e for any PPT algorithm A, there exists a negligible function negl such that
Pr[A(G(s)) =1 | s € {0,1}"] = Pr[A(r) = 1 | 7 € {0,1}*™)] < negl,

where the first probability is taken over the randomness of A and randomness of s, and
the second one is taken over the randomness of A and the randomness of r.

We leave the construction of PRG in the next lecture. Here we assume the existence of
PRG and based on it construct encryption scheme. Assume G with output length ¢(n) is a
secure PRG. A scheme IT; = (KeyGen, Enc, Dec) with fix length, introduced in the following,
achieves the IND-eav security. Fix an integer £(n) and set M = C = {0,1}¢, and K = {0, 1}".

KeyGen (1") On input 1", generate K < {0,1}" and output (K, K) as secret keys.
Enc(K, M) On input K and message M, generate C' = G(K) @ M as the ciphertext.
Dec(K,C) On input K and the ciphertext C, return M = G(K) & C as the message.

The correctness is trivial.

O—n

[ Pseudorandom WG

generator

= - =)

Figure 1: Illustration of II; according to Fig 3.2 of [KL20)

Theorem 3. Under the assumption G is a secure PRG, 11} = (KeyGen, Enc, Dec) is IND-eva
secure, i.e, for any PPT adversary A, the IND-eav advantage is negligible.

Please refer to section 3.3.3 of |[KL20| for the proof.
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5 IND-CPA security and construction

IND-eavesdropper is a very weak security aim. Actually, the adversary can do more things
than just receives the ciphertext and guess which message is encrypted in the aim ciphertext.
It can choose a message and asked the challenger (or user) to generate the ciphtext which
may help it to attack the aim ciphertext. For example, in World War II, British placed naval
mines at certain locations, knowing that the Germans—when finding those mines—would
encrypt the locations and send them back to Germany. Thus, it is necessary to define a
stronger security.

We abstract adversary’s capability of choosing a message and getting the corresponding
ciphertext by allowing adversary A to ask the algorithm Enc(K,-) with any message it
wants. We say this as allowing A to query the encryption oracle Enc(K,-) with message m
and receive the ciphertext Enc(/,m). This is usually denoted as AE"(5:),

The resulting security is indistinguishably chosen plaintext security and defined via the
following experiment. Let IT = (KeyGen, Enc, Dec) be an encryption scheme.

Expl 7 (A)
1. The challenger chooses b < {0, 1}
2. The challenger generates (K, K) « KeyGen(1*)

3. (Mo, My) «+ AEne(K>) // here, AE"“U) means A can query the encryption oracle
Enc(K, ) with any message it wants

4. The challenger runs C* = Enc(K, M) and returns back C*
5. AE<(E.)(C*) returns b’ as the guess of b

6. Return 1if b =¥, else 0.
query Enc(K,-) with m

1. return Enc(K,m)

Definition 6 (IND-CPA Security). The IND-CPA-advantage of an adversary against IND-
CPA security of 11 is defined as

Adim™ P (A) = | Pr[Exp®® P (A) = 1] — 1/2].

IT is said to be IND-CPA secure if for any PPT adversary, IND-CPA-advantage is a negligible
function of \.

5.1 Pseudorandom Function(PRF)

We first introduce the primitive of pseudorandom function, then construct IND-CPAsecure
encryption from pseudorandom function.
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Let F : {0,1}" x {0,1} — {0,1}°** be an efficient function (where in and out is a
polynomial of n). For each K € {0,1}", we get a function Fx : {0,1}" — {0,1}°* defined
by Fr(X) = F(K, X). Let Func, be the set of all the functions mapping {0, 1}"" to {0, 1}°“.
The size of Func,, is 2°%?™.

Definition 7 (Pseudorandom function (PRF)). Let F : {0,1}" x {0,1}" — {0,1}°“* be an
efficient function. We say Fk is a pseudorandom function (PRF), if for any PPT algorithm
A, there exists a negligible function negl of n such that

Pr[AfxO(17) = 1] — Pr[A/0(1") = 1] < negl,

where A0 (resp. AfC)) means A can query F(-) (resp. f(-)) with any input it wants, f
is a random function from Func,, and the probability is taken over the randomness of A.

We leave the construction of PRF in the next lecture. Here we assume the existence of

PRF and based on it construct encryption scheme.

5.2 Construction

Assume F'is a PRF. A scheme I1, = (KeyGen, Enc, Dec), introduced in the following, achieves
the IND-CPAsecurity with M = {0, 1}°ut, K = {0,1}", and C = {0, 1}’ x {0, 1}°*.

KeyGen (1™) On input 17, generate K < {0,1}" and output (K, K) as secret keys.

Enc(K, M) On input K and message M, choose randomness r < {0,1}"", compute Fy(r)®
M. Set the ciphertext as C' =< r, Fg(r) ® M >

Dec(K,C) On input K and the ciphertext C' =< ¢;,¢q >, return M = Fk(c1) @ ¢o as the
message.

The correctness is trivial.

Random string r

Pseudorandom
function

I Ciphertext

(ron)

Figure 2: Illustration of Ily according to Fig 3.3 of [KL20)
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Theorem 4. Under the assumption F is a secure PRF, 11, = (KeyGen, Enc, Dec) is IND-
CPA secure, i.e, for any PPT adversary A, the IND-eav advantage is negligible.

Please refer to section 3.5.2 of |[KL20] for the proof.

6 IND-CCA security and authenticated encryption

IND-CPA is still weak since the adversary can do more things than chosen plaintext. It
may have the capability to choose a ciphertext and asked the challenger (or user) to find the
corresponding plaintext. For example, in the case of CAPTCHA [Wik]|, the adversary (the
client of CAPTCHA) can generate any ciphertext and receives the plaintext fron CAPTCHA
server. Thus, it is necessary to define a stronger security.

We abstract adversary’s capability of choosing a ciphertext and getting the corresponding
plaintext by allowing adversary A to ask the algorithm Dec(K, -) with any ciphertext (expect
the aim ciphertext) it wants. We say this as allowing A to query the decrption oracle
Dec(K, -) with ciphertext C' # C* and receive Dec(K, C'). This is usually denoted as AP,

The resulting security is indistinguishably chosen ciphertext security (IND-CCA) and
defined via the following experiment. Let I = (KeyGen, Enc, Dec) be an encryption scheme.

Expﬁldfcca(A)
1. The challenger chooses b < {0, 1}
2. The challenger generates (K, K) + KeyGen(1*)

3. (Mo, My) < AEne(K;),Dec(K,) // here, AEnc(K:).Dec(K) means A can query the
encryption oracle Enc(K,-) with any message it wants, and query the decryption oracle
Dec(K, ) with any ciphertext it wants

4. The challenger runs C* = Enc(K, M) and returns back C*

5. ABne(K.),Dec(K.) (C*) returns b as the guess of b //AFn().Dec(i) means A can query
the encryption oracle Enc(K,-) with any message it wants, and query the decryption oracle
Dec(K, -) with any ciphertext (except C*) it wants

6. Return 1if b =¥, else 0.
query Enc(K,-) with m

1. return Enc(K,m)

Definition 8 (IND-CCA Security). The IND-CCA-advantage of an adversary against IND-
CCA security of 11 is defined as

Adi?* P (A) := | Pr[Expt® P (A) = 1] — 1/2].

IT is said to be IND-CCA secure if for any PPT adversary, IND-CCA-advantage is a negli-
gible function of .
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We build IND-CCA secure encryption from an IND-CPA secure encryotion and massage
authenticated code defined in the following.

6.1 Massage authenticated code

A massage authenticated code (MAC) scheme MAC consists of three public algorithms
(KeyGen, Mac, Ver).

KeyGen (1*) On input 1%, generate K < K and output a pair key (K, K) as secret keys.

Mack (M) This is a probabilistic or deterministic algorithm. On input secret key K and
message M, generate and output a tag t.

Verg (M, t) This is a deterministic algorithm. On input secret key K a message M and a
tag t, return 1 to indicate valid and 0 to indicate invalid.

Correctness requires that for all (K, K) + KeyGen(1%), Very (m, Macg(M)) holds for all
Me M.

Security of MAC requires that any adversary can not forge the MAC given several mes-
sage and MAC pairs. The formal security of MAC = (KeyGen, Mac, Ver) against strong
existentially unforgeable under an adaptive chosen-message attack (sUF-CMA) is defined
via the following experiment.

Mac-forgeyac(A)
1. (K, K) < KeyGen(1™)

2. On input 1", adversary A is given the oracle access
to Macg(+). Let Query be the list of A’s queries
and corresponding answers.

3. Areturns (m, t) and successes if Verg (t,t) = 1 and
(m,t) € Query. If A successes, return 1, other
wise return 0.

Definition 9 (sUF-CMA). A MAC scheme MAC = (KeyGen, Mac, Ver) is said to be exis-
tentiall y unfor g eable under an ada p tive chosen-message attack (sUF-CMA) secure, if for
any PPT adversary A, there exists a negligible function negl such that

Pr[Mac-forgeypc(A) — 1] < negl

Given a PRF F| the following MAC = (KeyGen, Mac, Ver) is a sUF-CMA secure MAC
with fixed-length message.

KeyGen (1) On input 1%, generate K < K and output a pair key (K, K) as secret keys.

Macg (M) On input K and message M, compute t = Fx(M).
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Verg(M,t) On input K a message M and a tag ¢, return 1 if t = F (M), otherwise 0.

There are several ways to extend the domain of MAC. At the end of Section [7, HMAC
with arbitrary input length is given.

6.2 IND-CPA and MAC = IND-CCA

Assume II, = (-, Enc, Dec) is an IND-CPA secure encryption and MAC = (-, Mac, Ver) is a
sUF-CMA secure MAC. An IND-CCA secure encryption IT3 = (KeyGen’, Enc’, Dec’) follows.

KeyGen’ (1) On input 17, generate K7, Ky « {0,1}™ and output (K || K2, K;||K>) as secret
keys.

Enc'(K;||K2, M) On input K = K;||Ky and message M, compute ¢; = Enc(Ky, M). Com-
pute co = Macg, (c1). Set the ciphertext as C =< ¢y, co >

Dec'(K,C) On input K = K;||K, and the ciphertext C' =< ¢, ¢y >, if Verg,(c1, ) = 0
abort. Return Dec(K7,c;) as the message.

Correctness of this scheme is guaranteed by the correctness of II, and MAC.

Theorem 5. Under the assumption that 11y is IND-CPA secure and MAC is sUF-CMA
secure, 113 is IND-C'CA secure.

Please refer to |[KL20, Theorem 4.19] for the proof.

7 Hash function

Hash functions are functions that take inputs of some length and compress them into fixed-
length outputs. Let n be the fixed length. Hash function is defined as,

H:{0,1}* — {0,1}" (5)

Generally, n = 128,160, 192, or 256.

Concrete hash functions includes MD5 [Riv92|, SHA1 [RO05|, SHA2 |[GD95|, and SHA3
[DT15]. Currently, MD5 and SHA-1 are insecure due to practical attacks of [WYO05],
[SBKT17].

Two important properties of hash function are collision resistant and one-wayness.

For an adversary A, and security parameter A, we define collision finding experiment
Exp$(A)(A) and one-wayness experiment respectively.

Exp (A)(A)
1. Xy, Xy < A(H, \)
2. IF X; # X, and H(X;) = H(X3), return 1
3. ELSE, return 0.
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Expy (A)(A)
. X «+{0,1}*, Y =H(M)
2. X'« A(H,Y,)\)
3. IF H(X') =Y, return 1

4. ELSE, return 0.

Definition 10 (Collision resistance). A hash function is said to be collision resistant if for
any PPT adversary A, there is a negligible function negl such that

Pr[Expf; (A)(N) = 1] = negl.

Definition 11 (One-wayness). A hash function is said to be one way if for any PPT adver-
sary A, there is a negligible function negl such that

Pr[Expf; (A)(N) = 1] = negl.
Theorem 6. If a hash function is collision resistant, then it is one way.

Proof. We assume that there exists a PPT adversary A to break the one-wayness, then there
exists an efficient adversary B to break the collision resistance (by querying .A). B works as
following.

BA(H, \)
1. Pick X «+{0,1}*, and give H,Y = H(M), A to A
2. On receiving X' from A(H,Y, \)
3. Output (X, X’)

Since [{0,1}*| > n, the probability X = X’ is negligible. On the condition X # X', if
the probability that A breaks one-wayness is ¢, then the probability that B breaks collision
resistance is €. O

Theorem 7. If a hash function is one-way it is not necessary to be collision resistant.
Proof. Suppose H : {0,1}* — {0,1}" is one-way, the following function

f](x): {O", ifx=0or 1.

H(zx), otherwise.

is also one-way. However, it is not collision-resistant, since inputs 1 and 0 has the same
image.
O

For general Birthday attack on hash functions, please refer to [KL20| Sec. 5.4.1] for more
details.
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HMAC

By combining collision resistant hash function with MAC with fixed length, using

the Hash-then-MAC paradigm, we can construct a MAC for arbitrary length. Roughly, as-

sume MAC = (KeyGen, Mac, Ver) is a MAC with fixed length, the mew MAC run Mac'(K, M)

MAC(K, H(M))
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