
Lecture Note 8: Privacy-Enhancing Technologies 2

Zero Knowledge Proof

Rui Song and Yuhuan Liu

March 13, 2023

Summary

In this lecture, we first discuss identification protocols and show how to build a secure signature
scheme based on an identification protocol. In particular, we introduce an elegant and efficient
identification protocol called the Schnorr’s identification protocol, and the Schnorr signature scheme
derived from it. The scheme can be proven secure under the DL assumption with a hash function
that can be modeled as a random oracle. Subsequently, we further generalize these protocols,
introduce the concept of Sigma protocols, and describe some implementations of Sigma protocols.
Finally, we present non-interactive zero-knowledge proof systems in a higher dimension and outline
SNARK techniques capable of proving arbitrary NP relations using arithmetic circuits.

1 Identification Protocols and Signatures

1.1 Identification/Authentication Paradigm

Identification protocols are used in all scenarios where a prover wants to convince the verifier of its
identity. The prover has a secret key sk, while the verifier has a verification key vk to confirm the
prover’s claim.

Definition 1.1 (Identification Protocol). An identification protocol is a triple of three algorithms
I = (G,P, V), where:

Prover Verifier

P V

G

accept or reject

sk vk

Figure 1: Identification Protocol.

1

P (α, u)

αt
R← Zq, ut ← gαt

c
R← C

αz ← αt + αc mod q

gαz
?
= ut · uc

V (u)

ut

c

αz

Figure 2: Schnorr Identification Protocol.

• G is a probabilistic key generation algorithm that outputs a secret key sk and a verification
key vk.

• P is a prover algorithm which takes a secret key sk as input.

• V is a verifier algorithm which takes a verification key vk as input, and outputs either accept
or reject.

During the identification process, P and V interact with each other. For all valid (vk , sk) generated
by G, if P is initialized by sk and V is initialized by vk, V must output accept with probability 1 at
the end of the interaction.

1.2 Schnorr’s Identification Protocol

Let G be a cyclic group of prime order q with generator g ∈ G. Suppose the prover P has a secret
key sk = α ∈ Zq, and the corresponding verification key is vk = u = gα ∈ G. To convince its
identity to a verifier V , P actually wants to convince V that it knows the secret key α.

Schnorr identification protocol is a well-designed protocol that allows P to convince V that it
knows the discrete logarithm of vk = u, while not directly sending the value sk = α to V [Sch90].

Definition 1.2 (Schnorr’s Identification Protocol). Schnorr’s identification protocol is an in-
teractive protocol with a triple of three algorithms Isch = (G,P, V), where:

• G is a probabilistic key generation algorithm that runs as follows:

α
R← Zq, u← gα.

The verification key is vk := u, while the secret key is sk := α.

• P is a prover algorithm which takes a secret key sk = α as input.

• V is a verifier algorithm which takes a verification key vk = u as input.

• P and V interact with each other as follows:

1. P computes αt
R← Zq, ut ← gαt, and sends ut to V ;

2. V generates a challenge c
R← C where C is a subset of Zq, and sends c to P ;

3. P computes a responce αz ← αt + αc ∈ Zq corresponding to the challenge c, and sends
αz to V ;

2

4. V checks if gαz = ut ·uc holds, if it is the case, V outputs accept, otherwise outputs reject.

Schnorr’s identification protocol defined in Theorem 1.2 is secure against direct attacks under
the DL assumption. As shown in Theorem 1.1, any efficient adversary that can succeed in a direct
attack with non-negligible probability can be turned into an algorithm that can efficiently recover
the secret α given the verification key u [BS23].

Theorem 1.1 (Security against Direct Attacks). Under the DL assumption for G, and as-
suming |C| is super-poly, Schnorr’s identification protocol is secure against direct attacks.

Proof sketch. Suppose A has advantage ϵ in attacking Isch. The challenger generates the verification
key u = gα. In the attacking attempt, A generates the first transcript ut arbitrarily. To succeed,
A must respond to the random challenge c with a valid response αz which satisfies gαz = ut · uc.
Actually, if A can generate a valid response to such a challenge with probability ϵ, it should be able
to generate a valid response to 2 such challenges with probability ϵ2.

Then, we can take advantage of A to compute the discrete logarithm of a random u ∈ G. Use
u as the verification key in Isch, and let A generate the first transcript ut. Then, we feed a random
challenge c to A and hope it can generate a valid response αz. If this happens, we can rewind
A’s internal state back to the point when it just finished generating ut, and feed it with another
challenge c′, and hope it to generates another valid response u′t.

If all of the above happens (with probability ≈ ϵ2), we actually obtain 2 valid transcripts
(ut, c, αz) and (ut, c

′, α′
z) with the same verification key u and the first transcript ut. And since we

assume C is super-poly, we have c′ ̸= c with overwhelming probability. Then, since either transcript
is valid, we have the following equations:

gαz = ut · uc, gα
′
z = ut · uc

′
.

By dividing the first one from the second, we can get:

gαz−α′
z = uc−c′ .

Since c ̸= c′, 1/(c− c′) must exists in Zq. So we can get:

g(αz−α′
z)/(c−c′) = u.

Thus, we compute the discrete logarithm of u using an efficient adversary A, which can directly
attack Schnorr’s identification protocol. While we assume the discrete logarithm of G is hard, no
algorithm can solve it efficiently. It comes that Schnorr’s identification protocol is secure against
direct attacks.

We showed that any adversary which can successfully perform a direct attack with non-negligible
probability can be converted into an algorithm that efficiently recovers the secret key α from the
verification key u. For this reason, Schnorr’s identification protocol is sometimes referred to as a
proof of knowledge of discrete logarithms.

Definition 1.3 (Honest Verifier Zero-Knowledge, HVZK). Let I = (G,P, V) be an iden-
tification protocol. We say that I is honest verifier zero-knowledge (HVZK) if there is an
efficient probabilistic simulation algorithm Sim such that for all possible (vk , sk) generated by G, the
output of Sim(vk) is indistinguishable with the transcript between P (sk) and V (vk).

Theorem 1.2. Schnorr’s identification protocol is HVZK.

3

Direct Challenger

(sk , vk)
R← G

V (vk)

vk

Sim(vk)

Sim(vk)

...

Impersonation Attempt

Eavesdropping
adversary A

Direct adversary B

accept or reject

Figure 3: Proof of Theorem 1.3.

Proof. The simulator Sim(u) generates the messages in a reverse manner. On the input u, Sim
performs as follows:

1. randomly chooses αz
R← Zq;

2. randomly chooses c
R← C;

3. computes ut ← gαz/uc.

Then we want to argue that the transcript generated by Sim(u) is indistinguishable from the
transcript between P and V . Actually, in a real interaction, c and αz are independent with each
other, since c ∈ C and αz ∈ Zq are both uniformly distributed. Upon this base, given c and αz, the
value of ut is uniquely determined by ut = gαz/uc. Thus, the output of the simulator Sim and the
transcript between P and V have the same distribution.

In the following Theorem 1.3, we will show that any identification protocol which is HVZK and
secure against direct attacks is also secure against eavesdropping attacks.

Theorem 1.3 (Security against Eavesdropping Attacks). If an identification protocol I is
secure against direct attacks, and it is HVZK, then the protocol is also secure against eavesdropping
attacks.

Proof sketch. For every eavesdropping adversary A, we can construct another adversary B who
interacts with the challenger in the direct attack game. B works the same as A, except that it
generates the transcripts itself using Sim, and feed them to A. It concludes that the probability of
B winning in the eavesdropping attack game is the same as that of A winning in the direct attack
game.

Theorem 1.4 (Schnorr’s Security). If Schnorr’s identification protocol is secure against direct
attacks, then it is also secure against eavesdropping attacks.

4

Proof. This theorem comes directly from Theorem 1.2 and Theorem 1.3.

To summarize, Schnorr’s identification protocol has the following three important properties:

1. Completeness: if P and V execute the protocol honestly, V will always output accept.

2. Soundness: If V outputs accept, we can extract a valid witness α effectively.

3. HVZK: we can efficiently simulate valid transcripts even if we do not know the witness α.

1.3 Schnorr Signature

We can convert Schnorr’s identification protocol to a signature scheme. This signature scheme can
be proven secure in the random oracle model (ROM) under the discrete logarithm assumption.

Recall that in Schnorr’s identification protocol Isch, we need a cyclic group G of prime order
q with generator g ∈ G, along with a challenge space C ⊆ Zq. Now, we need a hash function
H :M× G → C which can be modeled as a random oracle, whereM is the message space in the
signature scheme [Sch91].

Definition 1.4 (Schnorr Signature). Schnorr signature scheme is a protocol with a triple of three
algorithms Ssch = (G,S, V), where:

• G is a probabilistic key generation algorithm that runs as follows:

α
R← Zq, u← gα.

The public key is pk := u, while the secret key is sk := α.

• S is a signing algorithm which signs a message m ∈M using a secret key sk = α. S runs as
follows:

αt
R← Zq, ut ← gαt , c← H(m,ut), αz ← αt + αc.

S outputs σ := (ut, αz) as the signature on the message m.

• V is a verification algorithm which verifies a signature σ = (ut, αz) on a message m ∈ M
using a public key pk = u. To this end, S computes c ← H(m,ut), and output accept if and
only if gαz = ut · uc.

2 Sigma Protocol

2.1 Definition of Sigma Protocols

Schnorr’s identification protocol is a special case of a class of protocols called Sigma protocols.
Before introducing Sigma protocols, we first declare some useful concepts.

Definition 2.1 (Effective Relation). An effective relation is a binary relation R ⊆ X ×Y, where
X , Y and R are finite sets. Elements in Y are called statements. If (x, y) ∈ R, then x is called a
witness for y.

Definition 2.2 (The Language of True Statements). Let R ⊆ X ×Y be an effective relation.
We say a statement y ∈ Y is a true statement if (x, y) ∈ R holds for some x ∈ X ; otherwise, we
say y is a false statement.

We denote to LR the language defined by R, i.e., the set of all true statements. Thus we have

LR =
{
y ∈ Y | ∃x ∈ X s.t. (x, y) ∈ R

}
.

5

Then we can define the syntax of a Sigma protocol.

Definition 2.3 (Sigma Protocol). Let R ⊆ X ×Y be an effective relation. A Sigma protocol for
R is a pair of algorithms (P, V), where:

• P is an interactive algorithm called the prover which takes a witness x ∈ X and a statement
y ∈ Y as input, where (x, y) ∈ R.

• V is an interactive algorithm called the verifier which takes a statement y ∈ Y as input, and
outputs either accept or reject.

• P and V interact with each other as follows:

– At the beginning of the protocol, P computes a message t which is called the commitment,
and sends t to V ;

– Upon receiving t from P , V randomly chooses a challenge c from a finite challenge space
C, and sends c back to P ;

– Upon receiving c from V , P computes a response z according to c, and sends z back to
V ;

– Upon receiving z from P , V outputs either accept or reject. V ’s computation should be a
function of the statement y and the transcript (t, c, z). Particularly, V does not make any
random choices other than the selection of the challenge c, i.e., all other computations
are strictly deterministic.

Just like Schnorr’s identification protocol, Sigma protocols have the following three properties:

1. Completeness: if P and V execute the protocol honestly, V will always output accept.

2. Soundness: If V outputs accept, we can extract a valid witness x based on the transcript
(t, c, z) and (t, c′, z′) effectively.

3. HVZK: we can efficiently simulate valid transcripts for y ∈ Y even if we do not know the
witness x ∈ X .

2.2 Cases of Sigma Protocols

2.2.1 Schnorr’s Protocol

As introduced before, Schnorr’s protocol is a special case of Sigma protocols. In Schnorr’s protocol,
a prover can convince a verifier that it knows the discrete logarithm of a given group element,
while not revealing the value of the very discrete logarithm. If using the definition of relation and
language above, we can denote the relation of Schnorr’s identification protocol as:

Rsch =
{
(α, u) ∈ Zq ×G : gα = u

}
.

2.2.2 Okamoto’s Protocol

Let G be a cyclic group of prime order q with generator g ∈ G. Let some arbitrary group element
h ∈ G be a system parameter that is generated beforehand and is publicly accessible to all parties.

6

P ((α, β), u) V (u)

c

αz, βz

αt
R← Zq, βt

R← Zq, ut ← gαthβt

c
R← C

αz ← αt + αc

βz ← βt + βc

gαzhβz
?
= ut · uc

ut

Figure 4: Okamoto’s Protocol.

Okamoto’s protocol allows a prover to convince a verifier that it knows a representation of a
given group element u ∈ G, but not need to provide the representation to the verifier [Oka92].
Specifically, the relation of Okamoto’s protocol is as follows:

Roka =
{(

(α, β), u
)
∈ Z2

q ×G : gαhβ = u
}
.

A witness for the statement u ∈ G is (α, β) ∈ Z2
q such that gαhβ = u. It should be clear that

every statement in Okamoto’s protocol should have multiple (actually q) witnesses.

Definition 2.4 (Okamoto’s Protocol). Okamoto’s protocol is an interactive protocol with a pair
of algorithms Ioka = (P, V), where:

• P computes:

αt
R← Zq, βt

R← Zq, ut ← gαthβt ,

and sends ut to V .

• V generates a challenge c
R← C where C is a subset of Zq, and sends c to P .

• P computes:
αz ← αt + αc ∈ Zq, βz ← βt + βc ∈ Zq,

and sends (αz, βz) to V .

• V checks if gαzhβz = ut · uc holds, if it is the case, V outputs accept, otherwise outputs reject.

Like Schnorr’s identification protocol, Okamoto’s protocol has the properties of completeness,
soundness, and HVZK.

2.2.3 Chaum-Pedersen Protocol

Definition 2.5 (DH-Triple). Let G be a cyclic group of prime order q with generator g ∈ G. For
α, β, γ ∈ Zq, we say (gα, gβ, gγ) is a DH-triple if γ = αβ holds.

The Chaum-Pedersen protocol allows a prover to convince a verifier that a given triple (u, v, w)
is a DH-triple, while not revealing any one of the elements in the DH-triple [CP93]. Specifically,
the relation of the Chaum-Pedersen protocol is as follows:

Rcp =
{(

β, (u, v, w)
)
∈ Zq ×G3 : v = gβ ∧ w = uβ

}
.

7

P (β, (u, v, w)) V (u, v, w)

vt, wt

c

βz

βt
R← Zq, vt ← gβt , wt ← uβt

βz ← βt + βc

c
R← C

gβz
?
= vt · vc and uβz

?
= wt · wc

Figure 5: Chaum-Pedersen Protocol.

A witness for the statement (u, v, w) ∈ G3 is β ∈ Zq such that v = gβ and w = uβ hold. It
should be clear that a statement (u, v, w) has a witness if and only if it is a DH-triple. Thus, not
every statement in this protocol has a witness.

Definition 2.6 (Chaum-Pedersen Protocol). Chaum-Pedersen protocol is an interactive pro-
tocol with a pair of algorithms Icp = (P, V), where:

• P computes:

βt
R← Zq, vt ← gβt , wt ← uβt ,

and sends (vt, wt) to V .

• V generates a challenge c
R← C where C is a subset of Zq, and sends c to P .

• P computes:
βz ← βt + βc ∈ Zq,

and sends βz to V .

• V checks if gβz = vt · vc and uβz = wt · wc hold, if it is the case, V outputs accept, otherwise
outputs reject.

Chaum-Pedersen protocol also has the properties of completeness, soundness, and HVZK. Given
an input of a triple (u, v, w) ∈ G3 and c ∈ C, the simulator Sim computes:

βz
R← Zq, vt ← gβz/vc, wt ← uβz/wc,

and outputs
(
(vt, wt), βz

)
. It should be clear that the output of Sim is always valid as a transcript,

as required for HVZK.

2.3 Combination of Sigma Protocols

Sigma protocols can be combined to prove more complicated relations. In the AND composition,
the prover could convince the verifier that it knows witnesses for multiple statements. While in the
OR composition, the prover could convince the verifier that it knows witnesses for one of the given
statements.

8

P (x0, x1; h0, h1) V (h0, h1)

u0
R← Zq, a0 ← gu0

u1
R← Zq, a1 ← gu1

r0 ← u0 + cx0

r1 ← u1 + cx1

a0, a1

c

r0, r1

c
R← C

gr0
?
= a0 · hc0

gr1
?
= a1 · hc1

Figure 6: Protocol for AND Composition (for DL Relations).

2.3.1 AND Composition

Definition 2.7 (AND Composition). Given a Sigma protocol (P0, V0) for relation R0 ⊆ X0×Y0
and a Sigma protocol (P1, V1) for relation R1 ⊆ X1 × Y1. Assume that both protocols use the same
challenge space C ⊆ Zq. The two Sigma protocols can be combined into a new Sigma protocol for
relation:

RAND =
{(

(x0, x1), (y0, y1)
)
∈ (X0 ×X1)× (Y0 × Y1) : (x0, y0) ∈ R0 ∧ (x1, y1) ∈ R1

}
.

In the case where R0 and R1 are both DL relations, the relation of the AND combination for
R0 ∧R1 is:

RAND−Sch =
{(

(x0, x1), (h0, h1)
)
∈ Z2

q ×G2 : h0 = gx0 ∧ h1 = gx1

}
.

As shown in Figure 6, the protocol (P, V) for proving the above AND composition relation is
as follows:

• P computes:

u0
R← Zq, u1

R← Zq, a0 ← gu0 , a1 ← gu1 ,

and sends (a0, a1) to V .

• V generates a challenge c
R← C and sends c to P .

• P computes:
r0 ← u0 + cx0 ∈ Zq, r1 ← u1 + cx1 ∈ Zq,

and sends (r0, r1) to V .

• V checks if gr0 = a0 · hc0 and gr1 = a1 · hc1 hold, if it is the case, V outputs accept, otherwise
outputs reject.

9

P (b, x; h0, h1) V (h0, h1)

ub
R← Zq, ab ← gub

cd, rd
R← Zq, ad ← grd/hcdd

cb ← c− cd

rb ← ub + cbx

a0, a1

c

c0, c1, r0, r1

c
R← C

c0 + c1
?
= c

gr0
?
= a0 · hc00

gr1
?
= a1 · hc11

Figure 7: Protocol for OR Composition (for DL Relations).

2.3.2 OR Composition

Definition 2.8 (OR Composition). Given a Sigma protocol (P0, V0) for relation R0 ⊆ X0 × Y0
and a Sigma protocol (P1, V1) for relation R1 ⊆ X1 × Y1. Assume that both protocols use the same
challenge space C ⊆ Zq. The two Sigma protocols can be combined into a new Sigma protocol for
relation:

ROR =
{(

(b, x), (y0, y1)
)
∈
(
{0, 1} × (X0 ∪ X1)

)
× (Y0 × Y1) : (x, yb) ∈ Rb

}
.

In the case where R0 and R1 are both DL relations, the relation of the OR combination for
R0 ∨R1 is:

ROR−Sch =
{(

(b, x), (h0, h1)
)
∈
(
{0, 1} × Zq

)
×G2 : hb = gx

}
.

As shown in Figure 7, the protocol (P, V) for proving the above OR composition relation is as
follows:

• P computes:

cd
R← Zq, rd

R← Zq, ub
R← Zq, ad ← grd/hcdd , ab ← gub ,

where d = 1− b, and sends (a0, a1) to V .

• V generates a challenge c
R← C and sends c to P .

• P computes:
cb ← c− cd, rb ← ub + cbx ∈ Zq,

and sends (c0, c1, r0, r1) to V .

• V checks if c0+ c1
?
= c, gr0 = a0 ·hc00 and gr1 = a1 ·hc11 hold, if it is the case, V outputs accept,

otherwise outputs reject.

10

P (b, β;u, v, w) V (u, v, w)

βb, rd
R← Zq, cd

R← C
vb ← gβb , wb ← uβb

vd ← grd/vcd , wd ← urd/(w/gb)cd

cb ← c− cd, rb ← βb + βcb

v0, w0, v1, w1

c

c0, c1, r0, r1

c
R← C

c0 + c1
?
= c

gr0
?
= v0 · vc0 , ur0

?
= w0 · wc0

gr1
?
= v1 · vc1 , ur1

?
= w1 · (w/g)c1

Figure 8: Protocol for OR Composition (for DH-Triple Relations).

In another case where R0 and R1 are the relations of DH-triples, the relation of the OR com-
position for R0 ∨R1 is:

ROR−CP =
{(

(b, β), (u, v, w)
)
∈
(
{0, 1} × Zq

)
×G3 : v = gβ ∧ w = uβ · gb

}
.

The above relation indicates that (u, v, w) is the ElGamal encryption of 0 or 1 if and only if (u, v, w)
or (u, v, w/g) is a DH-triple.

As shown in Figure 8, the protocol (P, V) for proving the above OR composition relation is as
follows:

• P computes:

βb
R← Zq, vb ← gβb , wb ← uβb ,

cd
R← Zq, rd

R← Zq, vd ← grd/vcd , wd ← urd/(w/g)cd ,

where d = 1− b, and sends (v0, w0, v1, w1) to V .

• V generates a challenge c
R← C and sends c to P .

• P computes:
cb ← c− cd, rb ← βb + βcb ∈ Zq,

and sends (c0, c1, r0, r1) to V .

• V checks if c0+ c1
?
= c, gr0 = v0 · vc0 , ur0 = w0 ·wc0 , gr1 = v1 · vc1 and ur1 = w1 · (w/g)c1 hold,

if it is the case, V outputs accept, otherwise outputs reject.

The above protocol could be used in encrypting a bit using ElGamal encryption. Suppose one
encodes a bit b as gb and then encrypts it using the receiver’s public key u ∈ G, generating a
ciphertext (v, w) = (gβ, uβ · gb). One could use the protocol to convince the verifier that (v, w) is
derived from a bit (not other stuff, e.g., a number other than 0/1), while revealing nothing else.

11

3 Zero-Knowledge Proofs

3.1 Zero-Knowledge Proof System

Zero-knowledge proofs are extensions of Sigma protocols. As all other Sigma protocols, for language
L, zero-knowledge proof systems have the following three properties:

• Completeness: if y ∈ L, and both P and V interact with each other honestly, V must output
accept at the end of the interaction.

• Soundness: if y /∈ L, for any computational-bounded prover P , V outputs accept with negli-
gible probability.

• Zero-knowledge: any V who does not know the witness x can efficiently simulate valid tran-
scripts for any statement y ∈ L.

Given a NP language LR for a relation R, a prover P initialized by (x, y) ∈ R could prove to a
verifier that y ∈ L holds. The above three properties imply the following propositions:

• if (x, y) ∈ R holds for some x ∈ X , verifier V will output accept with overwhelming probability.

• if (x, y) /∈ R holds for all x ∈ X , p.p.t. verifier V will output accept with negligible probability.

• Any verifier V could learn nothing about the witness x ∈ X during the interaction.

According to Goldreich, Micali and Wigderson [GMW86], we have the following theorem:

Theorem 3.1. If there exists a secure probabilistic encryption, then every language in NP has
a zero-knowledge interactive proof system in which the prover is a probabilistic polynomial-time
machine that gets an NP proof as an auxiliary input.

3.2 Non-Interactive Zero-Knowledge (NIZK)

Zero-knowledge systems based on Sigma protocols need multiple rounds of interaction. Actually, any
Sigma protocol could be converted into a non-interactive proof system using Fiat-Shamir transform.
The basic idea is not relying on the verifier to randomly generate the challenges, while taking
advantage of a hash function H as a random oracle.

Definition 3.1 (Non-Interactive Proof System). Let R ⊆ X × Y be an relation. A non-
interactive proof system for R is a pair of algorithms (P, V), where:

• P is an efficient probabilistic algorithm which takes as input a witness x ∈ X and a statement
y ∈ Y where (x, y) ∈ R, and outputs a proof π ∈ PS.

• V is an efficient deterministic algorithm that takes as input a statement y ∈ Y and a proof
π ∈ PS, and outputs either accept or reject.

The following introduced Fiat-Shamir transform is a technique that can convert a Sigma protocol
into a non-interactive proof protocol [FS86].

Definition 3.2 (Fiat-Shamir Transform). Let Π = (P, V) be a Sigma protocol for a relation
R ⊆ X×Y. Assume that transcripts (t, c, z) for Π belongs to the space T ×C×Z. Let H : Y×T → C
be a hash function. We define the Fiat-Shamir non-interactive proof system Πfs = (P ′, V ′) with proof
space PS = T × Z:

12

P ′(x, y) V ′(y)

t← P (x, y)

c← H(y, t)

z ← P (c)

c← H(y, t)

V (t, c, z)
?
= accept

(t, z)

Figure 9: Non-Interactive Proof System based on Fiat-Shamir Transform.

• On input (x, y) ∈ R, P ′ runs P (x, y) to obtain a commitment t ∈ T . It then feeds the challenge
c← H(y, t) to P (x, y), and obtains a response z ∈ Z. It finally outputs (t, z) ∈ T × Z as the
proof π.

• On input (y, π) ∈ Y ×PS, V ′ parses π as (t, z) and verifies if (t, c, z) is a valid transcript for
y, where c = H(y, t) can be computed by V ′ itself.

It could be proven that given the underlying Sigma protocol is special HVZK and has unpre-
dictable commitments, the Fiat-Shamir transform could always yield a NIZK.

3.3 Succinct Non-Interactive Arguments of Knowledge (SNARKs)

SNARK is such a zero-knowledge technique that can be used in arbitrary logic and circuits, and
yield succinct proofs. In 2016, Groth built a zkSNARK scheme based on quadratic arithmetic
programs (QAP), which is now used in various systems [Gro16].

Definition 3.3 (zkSNARKs). Let R be an effective relation. For (x, y) ∈ R, a non-interactive
argument of knowledge is a triple of algorithms Πsnark = (G,P, V), where:

• G is a probabilistic setup algorithm that takes as input the relation R and a security parameter
λ, and outputs a common reference string σ.

• P is a probabilistic prover algorithm which takes as input a common reference string σ, a
witness x ∈ X and a statement y ∈ Y, outputs an argument π.

• V is a deterministic verifier algorithm that takes as input a common reference string σ, an
argument π and a statement y, and outputs either accept or reject.

We say a proof system Πsnark is a zero-knowledge succinct non-interactive argument of
knowledge (zkSNARK) if it has the properties of completeness, knowledge soundness, zero-
knowledge and succinctness defined below.

Definition 3.4 (Completeness). We say an argument Πsnark is complete if for all λ ∈ N and
(x, y) ∈ R, we have:

Pr

 σ
R← G(R)

π
R← P (σ, x, y)

: V (σ, y, π) = 1

 = 1.

13

Definition 3.5 (Knowledge Soundness). For all non-uniform polynomial-time adversaries A,
we say an argument Πsnark is knowledge sound if there exists a non-uniform polynomial-time
extractor Ext such that:

Pr

[
σ

R← G(R)(
(y, π);x

)
← (A∥Ext)(R, σ)

:
(x, y) /∈ R ∧
V (σ, y, π) = 1

]
≈ 0.

Definition 3.6 (Zero-Knowledge). For all λ ∈ N, all (x, y) ∈ R and all adversaries A, we say
an argument Πsnark is zero-knowledge if these exists a polynomial algorithm Sim such that:

Pr

 σ
R← G(R)

π
R← P (σ, x, y)

: A(R, σ, π) = 1

 = Pr

 σ
R← G(R)

π
R← Sim(R, y)

: A(R, σ, π) = 1

 .

Definition 3.7 (Succinctness). We say an argument Πsnark is succinct if the verifier time is a
polynomial of λ+ |y| and the proof size is a polynomial of λ. Upon this, if the size of the common
reference string |σ| is also a polynomial of λ, we say the argument is fully succinct.

References

[BS23] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft 0.6,
2023.

[CP93] David Chaum and Torben Pryds Pedersen. Wallet databases with observers. In Advances
in Cryptology—CRYPTO’92: 12th Annual International Cryptology Conference Santa
Barbara, California, USA August 16–20, 1992 Proceedings 12, pages 89–105. Springer,
1993.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Crypto, volume 86, pages 186–194. Springer, 1986.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design. In 27th Annual Sympo-
sium on Foundations of Computer Science (FCS 1986), pages 174–187. IEEE Computer
Society, 1986.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in
Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Pro-
ceedings, Part II 35, pages 305–326. Springer, 2016.

[Oka92] Tatsuaki Okamoto. Provably secure and practical identification schemes and correspond-
ing signature schemes. In Crypto, volume 92, pages 31–53. Springer, 1992.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Advances
in Cryptology—CRYPTO’89 Proceedings 9, pages 239–252. Springer, 1990.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4:161–174, 1991.

14

	Identification Protocols and Signatures
	Identification/Authentication Paradigm
	Schnorr's Identification Protocol
	Schnorr Signature

	Sigma Protocol
	Definition of Sigma Protocols
	Cases of Sigma Protocols
	Schnorr's Protocol
	Okamoto's Protocol
	Chaum-Pedersen Protocol

	Combination of Sigma Protocols
	AND Composition
	OR Composition

	Zero-Knowledge Proofs
	Zero-Knowledge Proof System
	Non-Interactive Zero-Knowledge (NIZK)
	Succinct Non-Interactive Arguments of Knowledge (SNARKs)

