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Roadmap

• Recall zero-knowledge proof

• Introduction to Secure Multiparty computation (MPC)

• Yao’s Garbled Circuits and GMW protocol

• Practical MPC: Private Set Intersection
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Recall: Zero-knowledge proof

• Identification protocol and signature

• Sigma protocol

• Zero-knowledge proof
• Non-interactive ZKP
• zkSNARK
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Identification for Decisional Diffie-Hellman 𝐼𝐷!!"

𝑣 = 𝑔! , 𝑤 = 𝑢!

Given  (𝑔, 𝑢, 𝑣 = 𝑔! , 𝑤 = 𝑢!) with witness 𝛽, P wants to prove that it knows 𝛽

𝑚𝑜𝑑 𝑞
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Identification for Decisional Diffie-Hellman (DDH)

𝑣 = 𝑔! , 𝑤 = 𝑢!

Given  (𝑔, 𝑢, 𝑣 = 𝑔! , 𝑤 = 𝑢!) with witness 𝛽, P wants to prove that it knows 𝛽

• Correctness(Completeness): If P and V exact the protocol honestly, the proof is accepted.

• Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) 𝛼

• Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate 

(simulate) the valid transaction efficiently
𝛽" ← 𝑍# , 𝑐 ← 𝑍# , 𝑣$ =

%!"

&#
, 𝑢$ = 𝑔!"/𝑢'

𝑚𝑜𝑑 𝑞
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OR-composition of ID!!"

• We are ready to give such zero-knowledge proof
• Given 𝐺 =< 𝑔 >, 𝑝𝑘 = 𝑢 = 𝑔.
• and ciphertext 𝑣 = 𝑔/, 𝑒 = 𝑢/ ⋅ 𝑔0
• Proof the following relation

𝑢, 𝑣, 𝑒 is the encryption of 0 or 1 if and only if  (𝑔, 𝑢, 𝑣, 𝑒) is a DDH tuple or(𝑔, 𝑢, 𝑣, 𝑒/𝑔) is a DDH tuple

We only need an OR-composition of ID112 to show that  
(𝑔, 𝑢, 𝑣, 𝑒) is a DDH tuple or(𝑔, 𝑢, 𝑣, 𝑒/𝑔) is a DDH tuple
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Applications: e-voting

ElGamal Enc for privacy
𝐺 =< 𝑔 >

𝑝𝑘 ≔ 𝑢 = 𝑔(, 𝑠𝑘 ≔ 𝑠

𝑣 = 𝑔!$ , 𝑒 = ℎ!$ ⋅ 𝑔)$For Alice

OR-composition proof Π of ID112 to show that  
(𝑔, 𝑢, 𝑣, 𝑒) is a DDH tuple or(𝑔, 𝑢, 𝑣, 𝑒/𝑔) is a DDH tuple

Π
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Assignment 2

• Task 1: prove 
• c>, c? = (g/, u/ ⋅ g@) and d>, d? = (gA, uA ⋅ gB) are the encryption of 0 or 1
• Hint: use the AND and OR composition of proof for DDH tuple

• Task 2: prove 
• c>, c? = (g/, u/ ⋅ g@) is the encryption of 𝑏 ∈ [0, 7]
• Hint OR composition on 8 DDH tuples

• submit via Blackboard, Deadline: 3 Apr. 11:00 pm
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Multiparty Computation (MPC)
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Our aim

1 Secure computation: Concepts & definitions

2 General constructions: Yao’s protocol, and GMW

3 Custom protocol: private set intersection
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Secure computation examples: Millionaires Problem

Andrew C. Yao, Protocols for Secure Computations.

• Alice has money x

• Bob has money y

• X>y or not (but do not want to leak x or y to each other )
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Secure computation examples: Sugar Bidding

• Farmers make bids (“at price X, I will produce Y amount”)

• Purchaser bids (“at price X, I will buy Y amount”)

• Market clearing price (MCP): price at which total supply = demand

Farmers Purchaser
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Secure computation examples: voting

• Secure electronic voting is simply 
computation of the addition 
function 
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Secure computation examples: Distribute signature

• Distribute (ECDSA) signature
• Split the secret signing key into 

several parts 
• such that only they work together 

can generate the final signature
ECDSA Signature
or RSA signature

𝑥! 𝑥" 𝑥# 𝑥$
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Secure computation examples: Ad conversion

• Computed with secure computation by Google and its customers

SELECT SUM(amount)
FROM ads, purchases
WHERE ads.email = purchases.email
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Secure computation

Premise:
• Mutually distrusting parties, each with 

a private input
• Learn the result of agreed-upon 

computation
• E.g, Millionaires Problem, sugar 

bidding, Ad conversion…

• Security 
• Privacy (“learn no more than” 

prescribed output)
• Input independence
• Etc…

Secure computation
x1

x2

x3

x4

x5

∴ f(x1, x2, x3, x4, x5)

Premise:
" Mutually distrusting parties,

each with a private input
" Learn the result of

agreed-upon computation
" Ex: election, auction, etc.

Security guarantees:
" Privacy (“learn no more

than” prescribed output)
" Input independence
" Output consistency, etc..

..even if some parties cheat,
collude!

.
.
.
.
.
.
.
.
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Secure computation
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What does it mean to “security” when 
computing f?
Or How do we define secure here?
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Security lists for Bidding

Consider a secure secret Sugar bidding
• An adversary may wish to learn the bids of all parties – to prevent this, 

require PRIVACY 
• An adversary may wish to win with a lower bid– to prevent this, require 

CORRECTNESS 
• But, the adversary may also wish to ensure that it always gives the 

highest bid – to prevent this, require INDEPENDENCE OF INPUTS 
• An adversary may try to abort the execution if its bid is not the highest –

require FAIRNESS
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General security requirement 

•Privacy: only the output is revealed 

•Correctness: the function is computed correctly 

• Independence of inputs: parties cannot choose inputs 

based on others’ inputs 

• Fairness: if one party receives output, all receive output
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Defining security

• Option 1: analyze security concerns for each specific problem
• Bidding: as in previous slide
• E-voting: privacy, correctness and fairness only? 

• Problems:
• How do we know that all concerns are covered? 
• Definitions are application dependent and need to be redefined from 

scratch for each task
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Defining security

•Option 2: general definition that captures all (most) 
secure computation tasks

•Properties of any such definition
•Well-defined adversary model 
•Well-defined execution setting 
• Security guarantees are clear and simple to understand

• How???
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Defining security: ideal world

• What can a corrupt party do in this ideal world?
• Choose any input y (independent of x) 
• Learn only f(x, y), and nothing more
• Cause honest party to learn f(x, y)

x y
x y

f(x, y) f(x, y)
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Real-ideal paradigm [GoldwasserMicali84]

Security goal: real protocol interaction is as secure
as the ideal-world interaction

For every “attack” against real protocol, there is a way
to achieve “same effect” in ideal world

2023/3/14 24/78



What is the “effect” of a generic attack?

Real-ideal paradigm

What is the “effect” of a generic attack?

! Something the adversary learns / can compute about honest party
! Some influence on honest party’s output

.
.
.
.
.
.
.
.

• Something the adversary learns / can compute about honest party 
• Some influence on honest party’s output
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Define Security

Security definition: For every real-world adversary A, there exists an ideal adversary 
A′ s.t. joint distribution (HonestOutput, AdvOutput) is indistinguishable

≈

x y

f(x, y)

Security definition: For every real-world adversary A, there exists an
ideal adversary A ′ s.t. joint distribution (HonestOutput,AdvOutput) is
indistinguishable

WLOG: ∃ simulator that simulates real-world interaction in ideal world

.
.
.
.
.
.
.
.

%FGJOJOH TFDVSJUZ
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Define Security

Security definition: For every real-world adversary A, there exists an ideal adversary A′ s.t.
joint distribution (HonestOutput, AdvOutput) is indistinguishable

≈

x y

f(x, y)

Security definition: For every real-world adversary A, there exists an
ideal adversary A ′ s.t. joint distribution (HonestOutput,AdvOutput) is
indistinguishable

WLOG: ∃ simulator that simulates real-world interaction in ideal world

.
.
.
.
.
.
.
.

%FGJOJOH TFDVSJUZ

WLOG: ∃ simulator that simulates real-world interaction in ideal world
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Define Security

Rule of Simulator
1. Send protocol messages that look like they came from honest party

• Demonstrates that honest party’s messages leak no more than f(x, y)

2. Extract an f-input by examining adversary’s protocol message
• “Explains” the effect on honest party’s output in terms of ideal world

Defining security

x y

f(x, y)

Role of simulator:
1. Send protocol messages that look like they came from honest party

! Demonstrates that honest party’s messages leak no more than f(x, y)

2. Extract an f-input by examining adversary’s protocol messages
! “Explains” the effect on honest party’s output in terms of ideal world

.
.
.
.
.
.
.
.
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Modeling of adversary

• Adversarial behavior
• Semi-honest: follows the protocol specification 

Tries to learn more than allowed by inspecting transcript 
• Malicious: follows any arbitrary strategy

• Adversarial power 
• Polynomial-time
• Computationally unbounded: information-theoretic security
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Function: Yao’s Millionaires’ Problem

𝐹 𝑥, 𝑦 = &(0, 1), 𝑥 < 𝑦
(1, 0), 𝑥 ≥ 𝑦
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Function: Zero-knowledge proof (or SIGMA protocol)

• Prover with input 𝑥, 𝑦 wants to prove that it knows 𝑥 such that 𝑦 ∈ 𝐿

𝐹 (𝑦, 𝑥), 𝑦 = −, 𝑏 , 𝑏 = 1 𝑖𝑓 (𝑥, 𝑦) ∈ 𝑅

A NP language 𝐿 ≔ 𝑦 ∃ 𝑥, 𝑠. 𝑡. 𝑥, 𝑦 ∈ 𝑅} Corresponding Relation 𝑅

Why do we say SIGAMA is an honest verifier zero-knowledge?
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Basic tool: Oblivious Transfer (OT)

OT
𝑚!, 𝑚" 𝑏 ∈ {0, 1}

𝑚#

It is theoretically equivalent to MPC as shown by Kilian (1988):

• Given OT, one can build MPC without any additional assumptions
• Similarly, one can directly obtain OT from MPC

Sender S receiver R
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Oblivious Transfer (OT)

• The standard definition of 1-out-of-2 OT involves two parties, a Sender S 
holding two secrets m2, m3, and a receiver R holding a choice bit b ∈ {0, 
1}

• OT is a protocol allowing R to obtain m4 while learning nothing about the 
"other" secret m356

• At the same time, S does not learn anything at all
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How to construct OT?

• Semi-honest 

Need public-key encryption that supports blind key generation:
• sample a public key without knowledge of the  secret key
• E.g.: ElGamal
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Function for OT

• A 1-out-of-2 OT is a cryptographic protocol securely implementing the 
functionality 𝐹78 defined below:

• Parameters:
Two parties: Sender S and Receiver R. 
S has input secrets m2, m3 and R has a selection bit b ∈ {0, 1}

Functionality 𝐹78 :
S sends m2, m3 to 𝐹78, and R sends b to 𝐹78
R receives m6, and S receives ⊥
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Time table: MPC

1976 1977 1978 1982 1985

Diffie

Hellman Shamir

Rivest

Adelman

Rivest

Adelman Dertouzos

Yao Goldwasser

Micali Rackoff

New
directions

RSA Homomorphic Enc MPC Zero Knowledge
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History of MPC

• The idea of secure computation was introduced by Andrew Yao in the 
early 1980s (Yao, 1982)

• Secure computation was primarily of only theoretical interest for the 
next twenty years

• In the early 2000s, algorithmic improvements and computing costs make 
it more realistic to build practical systems, e.g. Fairplay (Malkhi et al., 
2004)

• Since then, the speed of MPC protocols has improved by more than five 
orders of magnitude
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Our step

1 Secure computation: Concepts & definitions

2 General constructions: Yao’s protocol, and GMW

3 Custom protocol: private set intersection
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First: Two-party computation

• Every computation of function could be transferred to computing a 
Boolean circuit.

• Yao’s protocol: semi-honest secure (2-party) computation for Boolean 
circuits
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Before we start,            , so we focus on semi-honest case 

Semi-honest secure MPC for any circuit
Goldreich-Micali-Wigderson (GMW)

Yao etc.

Malicious secure MPC for any circuit

GMW compiler 
[GMW87]
Commitment

Zero-knowledge proof

[GMW87]Goldreich, O., S. Micali, and A. Wigderson. 1987. “How to Play any Mental Game or A Completeness 
Theorem for Protocols with Honest Majority”.2023/3/14 40/78



Yao’s Garble Circuit (two-party, Boolean)

• Take	AND	gate	for	example
• 𝐹 𝑢, 𝑣 = (𝑤,𝑤)
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Yao’s Garble Circuit (two-party, Boolean)

• 𝐹 𝑢, 𝑣 = (𝑤,𝑤)

• U sends all the ciphertexts E_k (E_k (k)  ) in volume w to V
• U sends   kII to V
• U sends   kJK , kJ> to V

E*$(𝐸*%(𝑚)) is the double AES enc of m with 𝑘+ and 𝑘,
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Yao’s Garble Circuit (two-party, Boolean)

• all the ciphertexts E_k (E_k (k)  ) in volume w,
• kII

• kJK , kJ>

With kII and kOO , V can decrypt kJJ
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all the ciphertexts E_k (E_k (k)  ) in volume w,
k--

k./ , k.+

2023/3/14 44/78



A fun application

• Bob and Alice want to check if 
they are interested in dating

- If both are yes, the output is yes
- If one is no, the output is no

<Pride and Prejudice>

An example from Yehuda Lindell2023/3/14 45/78



Garbled general circuit framework
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Garbled general circuit framework

Garbling a circuit: 
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Garbled general circuit framework

Garbling a circuit: 
• Pick random labels 𝑊/; 𝑊+ on each wire
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Garbled general circuit framework

Garbling a circuit: 
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate

E*$,*% (𝑚)) is the double AES enc of m with 𝑘+ and 𝑘,
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Garbled general circuit framework

Garbling a circuit: 
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate

Garbled evaluation:
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Garbled general circuit framework

Garbling a circuit: 
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate
• Garbled circuit all encrypted gates
• Garbled encoding one label per wire

Garbled evaluation:
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Garbled general circuit framework

Garbling a circuit: 
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate
• Garbled circuit all encrypted gates
• Garbled encoding one label per wire

Garbled evaluation:
• Only one ciphertext per gate is decryptable
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Garbled general circuit framework

Garbling a circuit: 
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate
• Garbled circuit all encrypted gates
• Garbled encoding one label per wire

Garbled evaluation:
• Only one ciphertext per gate is decryptable
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Garbled general circuit framework

Garbling a circuit: 
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate
• Garbled circuit all encrypted gates
• Garbled encoding one label per wire

Garbled evaluation:
• Only one ciphertext per gate is decryptable
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Garbled general circuit framework

Garbling a circuit: 
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate
• Garbled circuit all encrypted gates
• Garbled encoding one label per wire

Garbled evaluation:
• Only one ciphertext per gate is decryptable
• Result of decryption = value on outgoing wire

Security
2023/3/14 55/78



Yao’s Protocol

• Two party
• For a Boolean circuit.
2023/3/14 56/78



How about Multi-party and arithmetic /  Boolean circuit?
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GMW (multiparty, Boolean)

[GMW87]Goldreich, O., S. Micali, and A. Wigderson. 1987. “How to Play any Mental Game or A Completeness 
Theorem for Protocols with Honest Majority”.2023/3/14 58/78



GMW (multiparty, Boolean)
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GMW (multiparty, Boolean)
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GMW (multiparty, Boolean)

• One	AND	gate	requires	the	execution	of	1-out-of-4	OT

𝑑9 = 𝑐3⊕ 𝑐9 𝑏3⊕𝑏9 − 𝑑3

OT
𝑐"⊕0 𝑏"⊕0 − 𝑑",
𝑐"⊕0 𝑏"⊕1 − 𝑑",
𝑐"⊕1 𝑏"⊕0 − 𝑑",
𝑐"⊕1 𝑏"⊕1 − 𝑑"

𝑐$, 𝑏$
𝑑$
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GMW (multiparty, Arithmetic/Boolean)

Not difficult to extend to Multi-party by using 1-out-of-k OT2023/3/14 62/78



Our step

1 Secure computation: Concepts & definitions

2 General constructions: Yao’s protocol, and others

3 Custom protocol: private set intersection
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Custom protocol: private set intersection (PSI)

Special case of secure 2-party computation:
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PSI applications

• Contact discovery, when signing up for WhatsApp
• X = address book in my phone (phone numbers)
• Y = WhatsApp user database

• Private scheduling
• X = available timeslots on my calendar
• Y = available timeslots on your calendar

• Ad conversion rate
• X = users who saw the advertisement
• Y = customers who bought the product

• etc
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“Obvious” protocol
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“Obvious” protocol

• INSECURE: Receiver can test any v∈{x1, x2, ⋯} or not offline
• Problematic if items have low entropy (e.g., phone numbers)
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Classical protocol: Diffie-Hellman

where 𝐻 is a hash function with image of a group 𝐺 =< 𝑔 >

Idea:
• If 𝑥 = 𝑦,𝐻 𝑥 CD = 𝐻 𝑦 CD

• If 𝑥 ≠ 𝑦, they are random
2023/3/14 68/78



Classical protocol: Diffie-Hellman

where 𝐻 is a hash function with image of a group 𝐺 =< 𝑔 >

Idea:
• If 𝑥 = 𝑦,𝐻 𝑥 CD = 𝐻 𝑦 CD

• If 𝑥 ≠ 𝑦, they are random

Drawback: O(n) expensive exponentiations
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PSI 

There are other solutions with trade-offs using 
• Yao’s protocol
• OT
• Etc.
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PSI
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PSI: intersection of leaked password 
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Summary

1 Secure computation: Concepts & definitions

2 General constructions: Yao’s protocol, and GMW

3 Custom protocol: private set intersection

Depending on the definition of “Function F”, MPC could be very powerful
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Materials

• David Evans, Vladimir Kolesnikov and Mike Rosulek, A Pragmatic 
Introduction to Secure Multi-Party Computation
• Dan Boneh and Victor Shoup, A Graduate Course in Applied 

Cryptography, Section 23
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Lecture 9: Privacy-Enhancing technologies 3: MPC
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RSA Homomorphic Enc MPC Zero Knowledge
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Thank you 
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