
Lecture 9: Privacy-Enhancing Technologies-3
-Secure Multiparty Computation

COMP 6712 Advanced Security and Privacy

Haiyang Xue
haiyang.xue@polyu.edu.hk

2023/3/14

Several slides are based on those of Mike Rosulek, Lindell, etc

mailto:Haiyang.xue@polyu.edu.hk

Roadmap

• Recall zero-knowledge proof

• Introduction to Secure Multiparty computation (MPC)

• Yao’s Garbled Circuits and GMW protocol

• Practical MPC: Private Set Intersection

2023/3/14 2/78

Recall: Zero-knowledge proof

• Identification protocol and signature

• Sigma protocol

• Zero-knowledge proof
• Non-interactive ZKP
• zkSNARK

2023/3/14 3/78

Identification for Decisional Diffie-Hellman 𝐼𝐷!!"

𝑣 = 𝑔! , 𝑤 = 𝑢!

Given (𝑔, 𝑢, 𝑣 = 𝑔! , 𝑤 = 𝑢!) with witness 𝛽, P wants to prove that it knows 𝛽

𝑚𝑜𝑑 𝑞

2023/3/14 4/78

Identification for Decisional Diffie-Hellman (DDH)

𝑣 = 𝑔! , 𝑤 = 𝑢!

Given (𝑔, 𝑢, 𝑣 = 𝑔! , 𝑤 = 𝑢!) with witness 𝛽, P wants to prove that it knows 𝛽

• Correctness(Completeness): If P and V exact the protocol honestly, the proof is accepted.

• Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) 𝛼

• Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate

(simulate) the valid transaction efficiently
𝛽" ← 𝑍# , 𝑐 ← 𝑍# , 𝑣$ =

%!"

&#
, 𝑢$ = 𝑔!"/𝑢'

𝑚𝑜𝑑 𝑞

2023/3/14 5/78

OR-composition of ID!!"

• We are ready to give such zero-knowledge proof
• Given 𝐺 =< 𝑔 >, 𝑝𝑘 = 𝑢 = 𝑔.
• and ciphertext 𝑣 = 𝑔/, 𝑒 = 𝑢/ ⋅ 𝑔0
• Proof the following relation

𝑢, 𝑣, 𝑒 is the encryption of 0 or 1 if and only if (𝑔, 𝑢, 𝑣, 𝑒) is a DDH tuple or(𝑔, 𝑢, 𝑣, 𝑒/𝑔) is a DDH tuple

We only need an OR-composition of ID112 to show that
(𝑔, 𝑢, 𝑣, 𝑒) is a DDH tuple or(𝑔, 𝑢, 𝑣, 𝑒/𝑔) is a DDH tuple

2023/3/14 6/78

Applications: e-voting

ElGamal Enc for privacy
𝐺 =< 𝑔 >

𝑝𝑘 ≔ 𝑢 = 𝑔(, 𝑠𝑘 ≔ 𝑠

𝑣 = 𝑔!$, 𝑒 = ℎ!$ ⋅ 𝑔)$For Alice

OR-composition proof Π of ID112 to show that
(𝑔, 𝑢, 𝑣, 𝑒) is a DDH tuple or(𝑔, 𝑢, 𝑣, 𝑒/𝑔) is a DDH tuple

Π

2023/3/14 7/78

Assignment 2

• Task 1: prove
• c>, c? = (g/, u/ ⋅ g@) and d>, d? = (gA, uA ⋅ gB) are the encryption of 0 or 1
• Hint: use the AND and OR composition of proof for DDH tuple

• Task 2: prove
• c>, c? = (g/, u/ ⋅ g@) is the encryption of 𝑏 ∈ [0, 7]
• Hint OR composition on 8 DDH tuples

• submit via Blackboard, Deadline: 3 Apr. 11:00 pm

2023/3/14 8/78

Multiparty Computation (MPC)

2023/3/14 9/78

Our aim

1 Secure computation: Concepts & definitions

2 General constructions: Yao’s protocol, and GMW

3 Custom protocol: private set intersection

2023/3/14 10/78

Secure computation examples: Millionaires Problem

Andrew C. Yao, Protocols for Secure Computations.

• Alice has money x

• Bob has money y

• X>y or not (but do not want to leak x or y to each other)

2023/3/14 11/78

Secure computation examples: Sugar Bidding

• Farmers make bids (“at price X, I will produce Y amount”)

• Purchaser bids (“at price X, I will buy Y amount”)

• Market clearing price (MCP): price at which total supply = demand

Farmers Purchaser

2023/3/14 12/78

Secure computation examples: voting

• Secure electronic voting is simply
computation of the addition
function

2023/3/14 13/78

Secure computation examples: Distribute signature

• Distribute (ECDSA) signature
• Split the secret signing key into

several parts
• such that only they work together

can generate the final signature
ECDSA Signature
or RSA signature

𝑥! 𝑥" 𝑥# 𝑥$

2023/3/14 14/78

Secure computation examples: Ad conversion

• Computed with secure computation by Google and its customers

SELECT SUM(amount)
FROM ads, purchases
WHERE ads.email = purchases.email

2023/3/14 15/78

Secure computation

Premise:
• Mutually distrusting parties, each with

a private input
• Learn the result of agreed-upon

computation
• E.g, Millionaires Problem, sugar

bidding, Ad conversion…

• Security
• Privacy (“learn no more than”

prescribed output)
• Input independence
• Etc…

Secure computation
x1

x2

x3

x4

x5

∴ f(x1, x2, x3, x4, x5)

Premise:
" Mutually distrusting parties,

each with a private input
" Learn the result of

agreed-upon computation
" Ex: election, auction, etc.

Security guarantees:
" Privacy (“learn no more

than” prescribed output)
" Input independence
" Output consistency, etc..

..even if some parties cheat,
collude!

.
.
.
.
.
.
.
.

2023/3/14 16/78

Secure computation

2023/3/14 17/78

What does it mean to “security” when
computing f?
Or How do we define secure here?

2023/3/14 18/78

Security lists for Bidding

Consider a secure secret Sugar bidding
• An adversary may wish to learn the bids of all parties – to prevent this,

require PRIVACY
• An adversary may wish to win with a lower bid– to prevent this, require

CORRECTNESS
• But, the adversary may also wish to ensure that it always gives the

highest bid – to prevent this, require INDEPENDENCE OF INPUTS
• An adversary may try to abort the execution if its bid is not the highest –

require FAIRNESS

2023/3/14 19/78

General security requirement

•Privacy: only the output is revealed

•Correctness: the function is computed correctly

• Independence of inputs: parties cannot choose inputs

based on others’ inputs

• Fairness: if one party receives output, all receive output

2023/3/14 20/78

Defining security

• Option 1: analyze security concerns for each specific problem
• Bidding: as in previous slide
• E-voting: privacy, correctness and fairness only?

• Problems:
• How do we know that all concerns are covered?
• Definitions are application dependent and need to be redefined from

scratch for each task

2023/3/14 21/78

Defining security

•Option 2: general definition that captures all (most)
secure computation tasks

•Properties of any such definition
•Well-defined adversary model
•Well-defined execution setting
• Security guarantees are clear and simple to understand

• How???

2023/3/14 22/78

Defining security: ideal world

• What can a corrupt party do in this ideal world?
• Choose any input y (independent of x)
• Learn only f(x, y), and nothing more
• Cause honest party to learn f(x, y)

x y
x y

f(x, y) f(x, y)

2023/3/14 23/78

Real-ideal paradigm [GoldwasserMicali84]

Security goal: real protocol interaction is as secure
as the ideal-world interaction

For every “attack” against real protocol, there is a way
to achieve “same effect” in ideal world

2023/3/14 24/78

What is the “effect” of a generic attack?

Real-ideal paradigm

What is the “effect” of a generic attack?

! Something the adversary learns / can compute about honest party
! Some influence on honest party’s output

.
.
.
.
.
.
.
.

• Something the adversary learns / can compute about honest party
• Some influence on honest party’s output

2023/3/14 25/78

Define Security

Security definition: For every real-world adversary A, there exists an ideal adversary
A′ s.t. joint distribution (HonestOutput, AdvOutput) is indistinguishable

≈

x y

f(x, y)

Security definition: For every real-world adversary A, there exists an
ideal adversary A ′ s.t. joint distribution (HonestOutput,AdvOutput) is
indistinguishable

WLOG: ∃ simulator that simulates real-world interaction in ideal world

.
.
.
.
.
.
.
.

%FGJOJOH TFDVSJUZ

2023/3/14 26/78

Define Security

Security definition: For every real-world adversary A, there exists an ideal adversary A′ s.t.
joint distribution (HonestOutput, AdvOutput) is indistinguishable

≈

x y

f(x, y)

Security definition: For every real-world adversary A, there exists an
ideal adversary A ′ s.t. joint distribution (HonestOutput,AdvOutput) is
indistinguishable

WLOG: ∃ simulator that simulates real-world interaction in ideal world

.
.
.
.
.
.
.
.

%FGJOJOH TFDVSJUZ

WLOG: ∃ simulator that simulates real-world interaction in ideal world

2023/3/14 27/78

Define Security

Rule of Simulator
1. Send protocol messages that look like they came from honest party

• Demonstrates that honest party’s messages leak no more than f(x, y)

2. Extract an f-input by examining adversary’s protocol message
• “Explains” the effect on honest party’s output in terms of ideal world

Defining security

x y

f(x, y)

Role of simulator:
1. Send protocol messages that look like they came from honest party

! Demonstrates that honest party’s messages leak no more than f(x, y)

2. Extract an f-input by examining adversary’s protocol messages
! “Explains” the effect on honest party’s output in terms of ideal world

.
.
.
.
.
.
.
.

2023/3/14 28/78

Modeling of adversary

• Adversarial behavior
• Semi-honest: follows the protocol specification

Tries to learn more than allowed by inspecting transcript
• Malicious: follows any arbitrary strategy

• Adversarial power
• Polynomial-time
• Computationally unbounded: information-theoretic security

2023/3/14 29/78

Function: Yao’s Millionaires’ Problem

𝐹 𝑥, 𝑦 = &(0, 1), 𝑥 < 𝑦
(1, 0), 𝑥 ≥ 𝑦

2023/3/14 30/78

Function: Zero-knowledge proof (or SIGMA protocol)

• Prover with input 𝑥, 𝑦 wants to prove that it knows 𝑥 such that 𝑦 ∈ 𝐿

𝐹 (𝑦, 𝑥), 𝑦 = −, 𝑏 , 𝑏 = 1 𝑖𝑓 (𝑥, 𝑦) ∈ 𝑅

A NP language 𝐿 ≔ 𝑦 ∃ 𝑥, 𝑠. 𝑡. 𝑥, 𝑦 ∈ 𝑅} Corresponding Relation 𝑅

Why do we say SIGAMA is an honest verifier zero-knowledge?

2023/3/14 31/78

Basic tool: Oblivious Transfer (OT)

OT
𝑚!, 𝑚" 𝑏 ∈ {0, 1}

𝑚#

It is theoretically equivalent to MPC as shown by Kilian (1988):

• Given OT, one can build MPC without any additional assumptions
• Similarly, one can directly obtain OT from MPC

Sender S receiver R

2023/3/14 32/78

Oblivious Transfer (OT)

• The standard definition of 1-out-of-2 OT involves two parties, a Sender S
holding two secrets m2, m3, and a receiver R holding a choice bit b ∈ {0,
1}

• OT is a protocol allowing R to obtain m4 while learning nothing about the
"other" secret m356

• At the same time, S does not learn anything at all

2023/3/14 33/78

How to construct OT?

• Semi-honest

Need public-key encryption that supports blind key generation:
• sample a public key without knowledge of the secret key
• E.g.: ElGamal

2023/3/14 34/78

Function for OT

• A 1-out-of-2 OT is a cryptographic protocol securely implementing the
functionality 𝐹78 defined below:

• Parameters:
Two parties: Sender S and Receiver R.
S has input secrets m2, m3 and R has a selection bit b ∈ {0, 1}

Functionality 𝐹78 :
S sends m2, m3 to 𝐹78, and R sends b to 𝐹78
R receives m6, and S receives ⊥

2023/3/14 35/78

Time table: MPC

1976 1977 1978 1982 1985

Diffie

Hellman Shamir

Rivest

Adelman

Rivest

Adelman Dertouzos

Yao Goldwasser

Micali Rackoff

New
directions

RSA Homomorphic Enc MPC Zero Knowledge

2023/3/14 36/78

History of MPC

• The idea of secure computation was introduced by Andrew Yao in the
early 1980s (Yao, 1982)

• Secure computation was primarily of only theoretical interest for the
next twenty years

• In the early 2000s, algorithmic improvements and computing costs make
it more realistic to build practical systems, e.g. Fairplay (Malkhi et al.,
2004)

• Since then, the speed of MPC protocols has improved by more than five
orders of magnitude

2023/3/14 37/78

Our step

1 Secure computation: Concepts & definitions

2 General constructions: Yao’s protocol, and GMW

3 Custom protocol: private set intersection

2023/3/14 38/78

First: Two-party computation

• Every computation of function could be transferred to computing a
Boolean circuit.

• Yao’s protocol: semi-honest secure (2-party) computation for Boolean
circuits

2023/3/14 39/78

Before we start, , so we focus on semi-honest case

Semi-honest secure MPC for any circuit
Goldreich-Micali-Wigderson (GMW)

Yao etc.

Malicious secure MPC for any circuit

GMW compiler
[GMW87]
Commitment

Zero-knowledge proof

[GMW87]Goldreich, O., S. Micali, and A. Wigderson. 1987. “How to Play any Mental Game or A Completeness
Theorem for Protocols with Honest Majority”.2023/3/14 40/78

Yao’s Garble Circuit (two-party, Boolean)

• Take	AND	gate	for	example
• 𝐹 𝑢, 𝑣 = (𝑤,𝑤)

2023/3/14 41/78

Yao’s Garble Circuit (two-party, Boolean)

• 𝐹 𝑢, 𝑣 = (𝑤,𝑤)

• U sends all the ciphertexts E_k (E_k (k)) in volume w to V
• U sends kII to V
• U sends kJK , kJ> to V

E*$(𝐸*%(𝑚)) is the double AES enc of m with 𝑘+ and 𝑘,

2023/3/14 42/78

Yao’s Garble Circuit (two-party, Boolean)

• all the ciphertexts E_k (E_k (k)) in volume w,
• kII

• kJK , kJ>

With kII and kOO , V can decrypt kJJ

2023/3/14 43/78

all the ciphertexts E_k (E_k (k)) in volume w,
k--

k./ , k.+

2023/3/14 44/78

A fun application

• Bob and Alice want to check if
they are interested in dating

- If both are yes, the output is yes
- If one is no, the output is no

<Pride and Prejudice>

An example from Yehuda Lindell2023/3/14 45/78

Garbled general circuit framework

2023/3/14 46/78

Garbled general circuit framework

Garbling a circuit:

2023/3/14 47/78

Garbled general circuit framework

Garbling a circuit:
• Pick random labels 𝑊/; 𝑊+ on each wire

2023/3/14 48/78

Garbled general circuit framework

Garbling a circuit:
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate

E*$,*% (𝑚)) is the double AES enc of m with 𝑘+ and 𝑘,

2023/3/14 49/78

Garbled general circuit framework

Garbling a circuit:
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate

Garbled evaluation:

2023/3/14 50/78

Garbled general circuit framework

Garbling a circuit:
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate
• Garbled circuit all encrypted gates
• Garbled encoding one label per wire

Garbled evaluation:

2023/3/14 51/78

Garbled general circuit framework

Garbling a circuit:
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate
• Garbled circuit all encrypted gates
• Garbled encoding one label per wire

Garbled evaluation:
• Only one ciphertext per gate is decryptable

2023/3/14 52/78

Garbled general circuit framework

Garbling a circuit:
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate
• Garbled circuit all encrypted gates
• Garbled encoding one label per wire

Garbled evaluation:
• Only one ciphertext per gate is decryptable

2023/3/14 53/78

Garbled general circuit framework

Garbling a circuit:
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate
• Garbled circuit all encrypted gates
• Garbled encoding one label per wire

Garbled evaluation:
• Only one ciphertext per gate is decryptable

2023/3/14 54/78

Garbled general circuit framework

Garbling a circuit:
• Pick random labels 𝑊/; 𝑊+ on each wire
• “Encrypt” truth table of each gate
• Garbled circuit all encrypted gates
• Garbled encoding one label per wire

Garbled evaluation:
• Only one ciphertext per gate is decryptable
• Result of decryption = value on outgoing wire

Security
2023/3/14 55/78

Yao’s Protocol

• Two party
• For a Boolean circuit.
2023/3/14 56/78

How about Multi-party and arithmetic / Boolean circuit?

2023/3/14 57/78

GMW (multiparty, Boolean)

[GMW87]Goldreich, O., S. Micali, and A. Wigderson. 1987. “How to Play any Mental Game or A Completeness
Theorem for Protocols with Honest Majority”.2023/3/14 58/78

GMW (multiparty, Boolean)

2023/3/14 59/78

GMW (multiparty, Boolean)

2023/3/14 60/78

GMW (multiparty, Boolean)

• One	AND	gate	requires	the	execution	of	1-out-of-4	OT

𝑑9 = 𝑐3⊕ 𝑐9 𝑏3⊕𝑏9 − 𝑑3

OT
𝑐"⊕0 𝑏"⊕0 − 𝑑",
𝑐"⊕0 𝑏"⊕1 − 𝑑",
𝑐"⊕1 𝑏"⊕0 − 𝑑",
𝑐"⊕1 𝑏"⊕1 − 𝑑"

𝑐$, 𝑏$
𝑑$

2023/3/14 61/78

GMW (multiparty, Arithmetic/Boolean)

Not difficult to extend to Multi-party by using 1-out-of-k OT2023/3/14 62/78

Our step

1 Secure computation: Concepts & definitions

2 General constructions: Yao’s protocol, and others

3 Custom protocol: private set intersection

2023/3/14 63/78

Custom protocol: private set intersection (PSI)

Special case of secure 2-party computation:

2023/3/14 64/78

PSI applications

• Contact discovery, when signing up for WhatsApp
• X = address book in my phone (phone numbers)
• Y = WhatsApp user database

• Private scheduling
• X = available timeslots on my calendar
• Y = available timeslots on your calendar

• Ad conversion rate
• X = users who saw the advertisement
• Y = customers who bought the product

• etc

2023/3/14 65/78

“Obvious” protocol

2023/3/14 66/78

“Obvious” protocol

• INSECURE: Receiver can test any v∈{x1, x2, ⋯} or not offline
• Problematic if items have low entropy (e.g., phone numbers)
2023/3/14 67/78

Classical protocol: Diffie-Hellman

where 𝐻 is a hash function with image of a group 𝐺 =< 𝑔 >

Idea:
• If 𝑥 = 𝑦,𝐻 𝑥 CD = 𝐻 𝑦 CD

• If 𝑥 ≠ 𝑦, they are random
2023/3/14 68/78

Classical protocol: Diffie-Hellman

where 𝐻 is a hash function with image of a group 𝐺 =< 𝑔 >

Idea:
• If 𝑥 = 𝑦,𝐻 𝑥 CD = 𝐻 𝑦 CD

• If 𝑥 ≠ 𝑦, they are random

Drawback: O(n) expensive exponentiations

2023/3/14 69/78

PSI

There are other solutions with trade-offs using
• Yao’s protocol
• OT
• Etc.

2023/3/14 70/78

PSI

2023/3/14 71/78

PSI: intersection of leaked password

2023/3/14 72/78

Summary

1 Secure computation: Concepts & definitions

2 General constructions: Yao’s protocol, and GMW

3 Custom protocol: private set intersection

Depending on the definition of “Function F”, MPC could be very powerful

2023/3/14 73/78

Materials

• David Evans, Vladimir Kolesnikov and Mike Rosulek, A Pragmatic
Introduction to Secure Multi-Party Computation
• Dan Boneh and Victor Shoup, A Graduate Course in Applied

Cryptography, Section 23

2023/3/14 74/78

https://securecomputation.org/
http://toc.cryptobook.us/

Lecture 9: Privacy-Enhancing technologies 3: MPC

1976 1977 1978 1982 1985

Diffie

Hellman Shamir

Rivest

Adelman

Rivest

Adelman Dertouzos

Yao Goldwasser

Micali Rackoff

New
directions

RSA Homomorphic Enc MPC Zero Knowledge

2023/3/14 75/78

Thank you

2023/3/14 76/78

