Lecture 8: Privacy-Enhancing Technologies-2

-Zero Knowledge Proof

COMP 6712 Advanced Security and Privacy

Haiyang Xue

haiyang.xue@polyu.edu.hk
2023/3/7

Topic 2: Zero-knowledge proof

Identification protocol and signature

Sigma protocol

- Zero-knowledge proof
 - Non-interactive ZKP
 - zkSNARK and applications

Our aim

We would like to know what is zero-knowledge proof

We start from a special case, sigma protocol

How can we construct zero-knowledge proof?

What can we do with zero-knowledge proof?

Recent development of zero-knowledge proof.

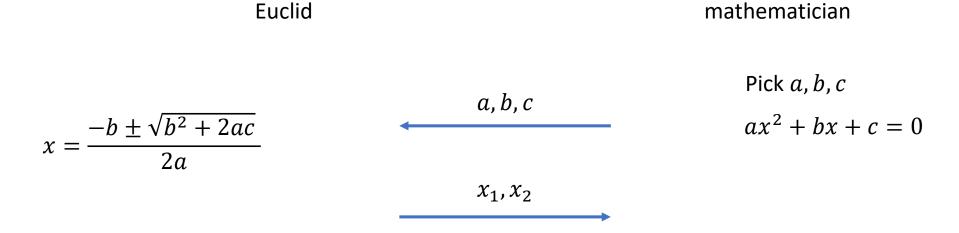
Mathematic problem

- Root of Quadratic equation
- $\bullet \ ax^2 + bx + c = 0$
- Solutions of this problem dates back to 2000 BC, Babylonian mathematicians give a preliminary solution.
- There are independent findings given by Babylonia, Egypt, Greece, China, and India.

• Now, we know
$$x = \frac{-b \pm \sqrt{b^2 + 2ac}}{2a}$$

We assume

• Euclid would like to show to another mathematician he can find roots of all Quadratic equations,



- BUT do not want to give any concrete solutions. (which adds "knowledge" to the mathematician)
- This is what zero-knowledge proof can solve

Electronic Voting (e-voting)

Candidates:

Alice,

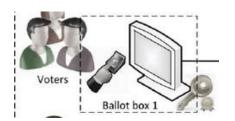
Bob,

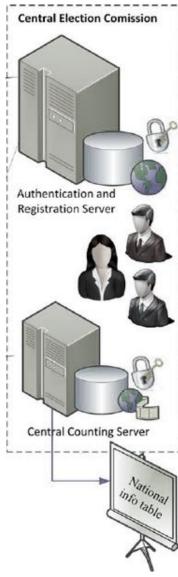
Tom,

Tony,

•••

Alice, 0 or 1





Electronic Voting (e-voting)

Candidates:

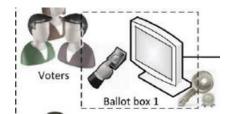
Alice,

Bob,

Tom,

Tony,

...



ElGamal Enc for privacy

$$G = \langle g \rangle$$

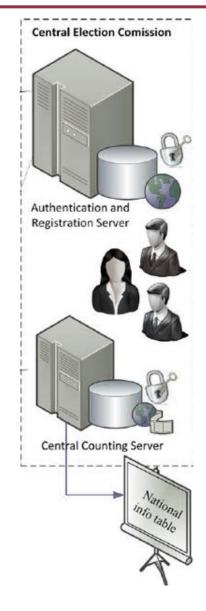
 $pk \coloneqq h = g^s$, $sk \coloneqq s$

For Alice g^{β_1} , $h^{\beta_1} \cdot g^{b_1}$, where $b_1 = 0$ or 1

For Alice g^{β_2} , $h^{\beta_2} \cdot g^{b_2}$, where $b_2 = 0$ or 1

For Alice g^{β_n} , $h^{\beta_n} \cdot g^{b_n}$, where $b_n = 0$ or 1

 $\Pi g^{eta_i}, \Pi(h^{eta_i} \cdot g^{b_i})$ which is $g^{\sum eta_i}, (h^{\sum eta_i} \cdot g^{\sum b_i})$ an enc of $\sum b_i$



Electronic Voting (e-voting)

Candidates:

Alice,

ElGamal Enc for privacy

Bob,

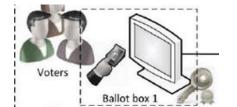
 $G = \langle g \rangle$

Tom,

 $pk := h = g^s, sk := s$

Tony,

For Alice g^{β_1} , $h^{\beta_1} \cdot g^{b_1}$

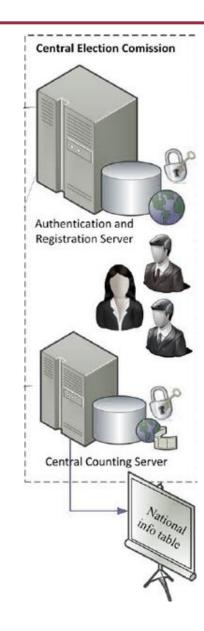


Cheating Voter

 $b_1 = 1000$

Thus, the voter needs to prove this is a ElGamal enc of 0 or 1 While no knowledge of b_1 is leaked

This is what Zero-knowledge proof can solve



Identification protocol

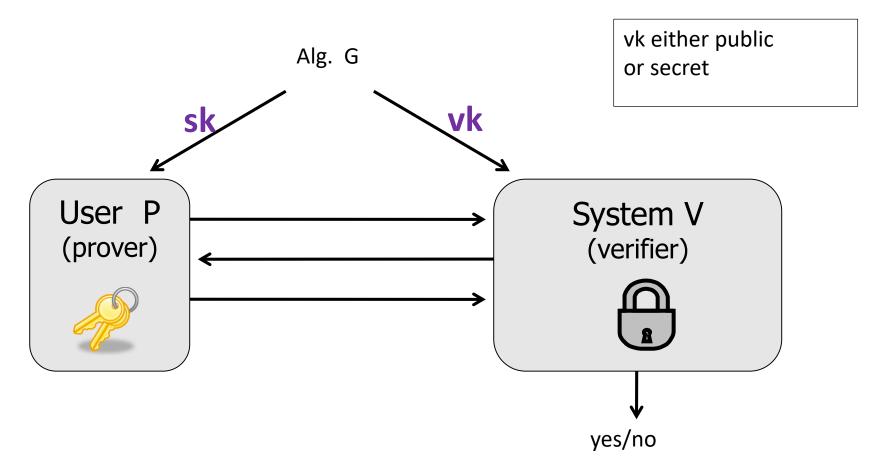
Identification protocol and signature

• ID for dl

• DDH

Schnorr signatures

Identification/Authentication paradigm

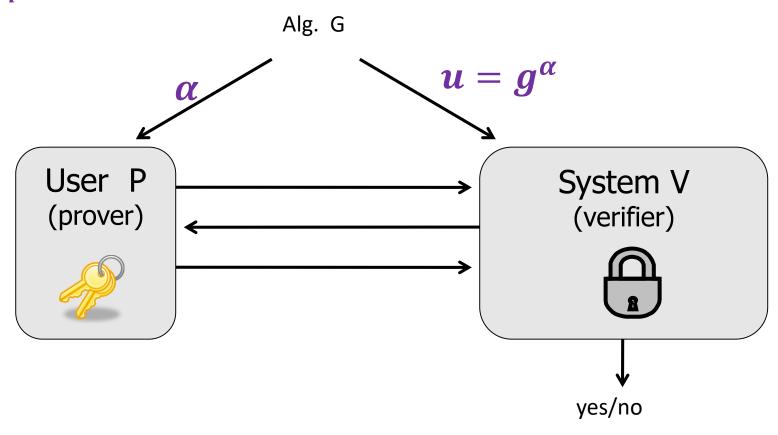


Password Auth. sk = vk = pw

Public key Auth. sk, vk is public key

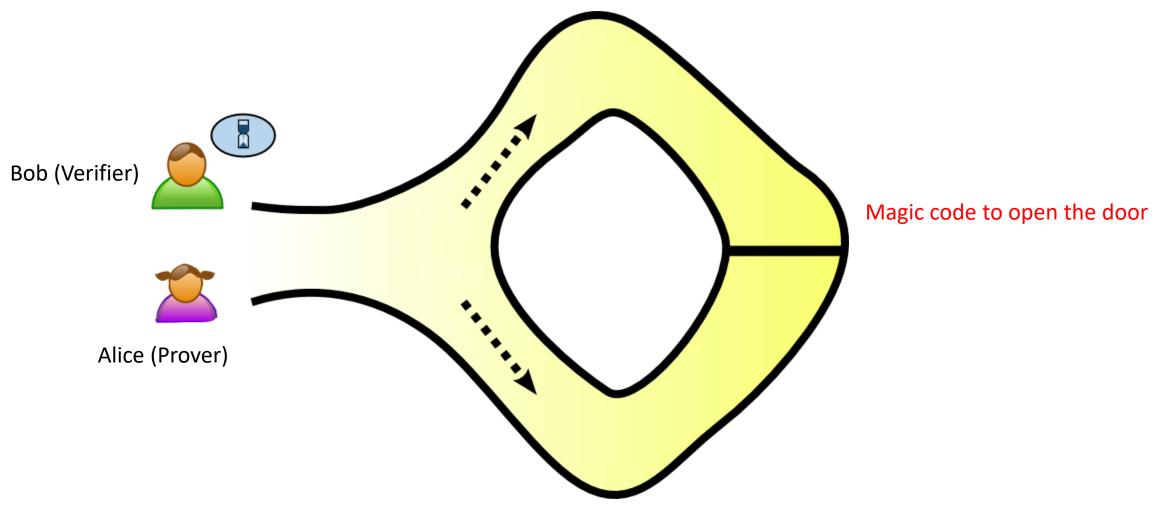
Identification/Authentication paradigm

$$G = \langle g \rangle, |G| = q$$



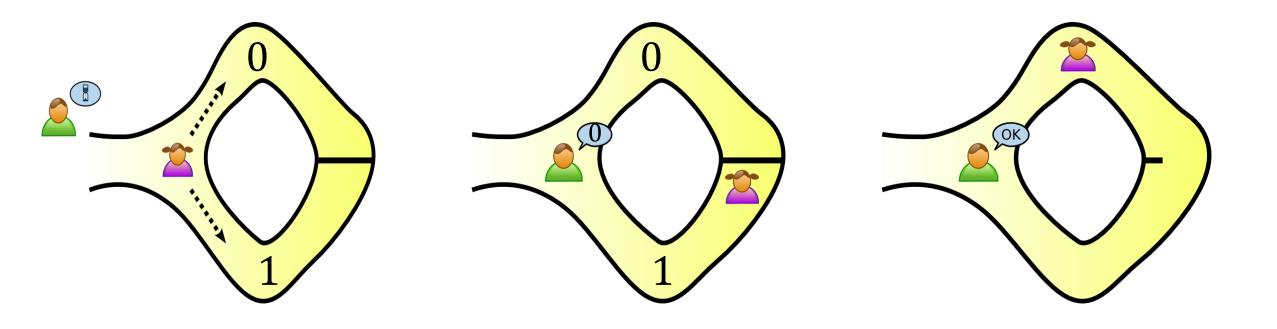
P proves the fact that "it knows lpha such that $u=g^{lpha}$ " and nothing else is leaked. How???????

A toy example: Ali Baba Cave

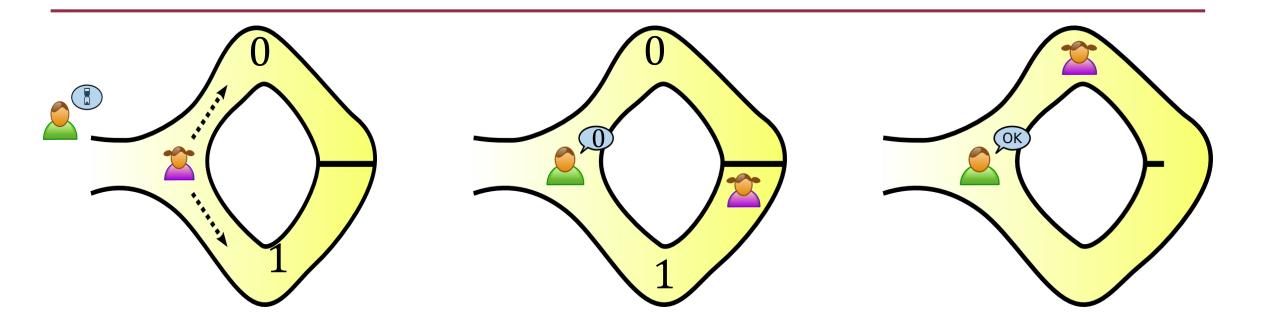


Goldwasser, Micali, Rackoff: The Knowledge Complexity of Interactive Proof-Systems (Extended Abstract)

Alibaba Cave

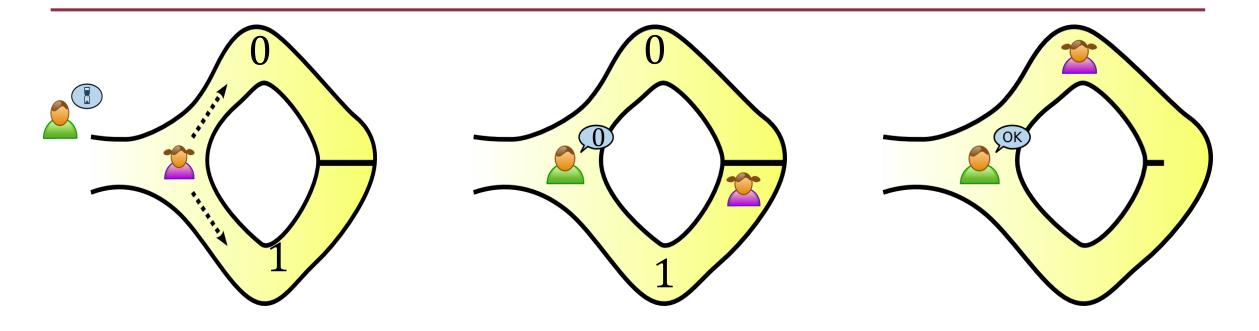


Alibaba Cave



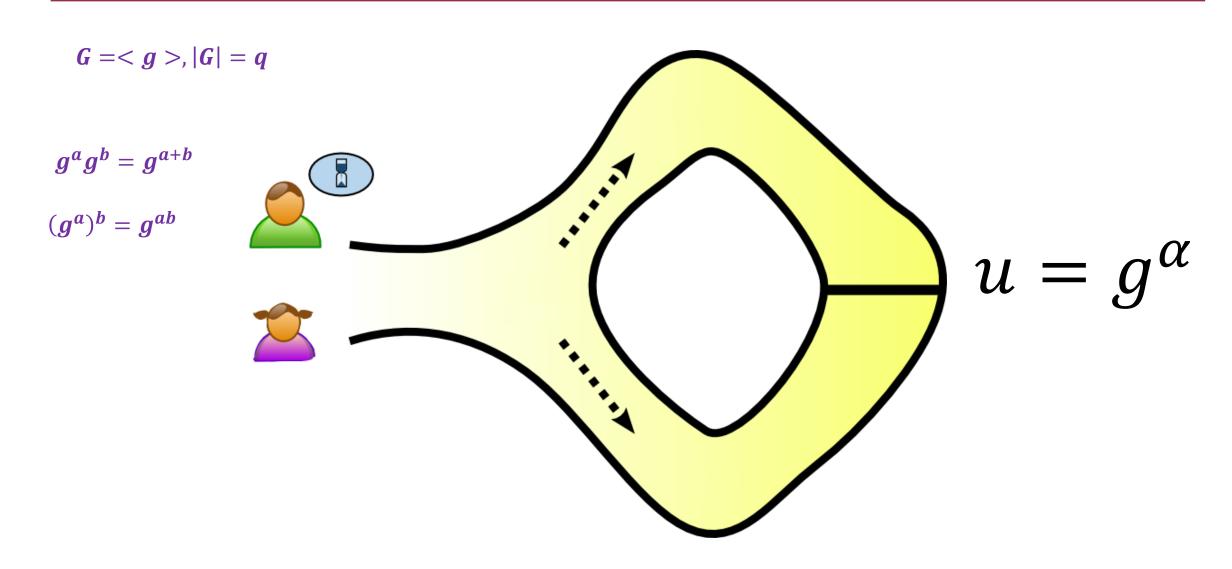
- if a doesn't know the key, the proof was accepted with 1/2.
- learns nothing about the magic code

Repeat the game n times

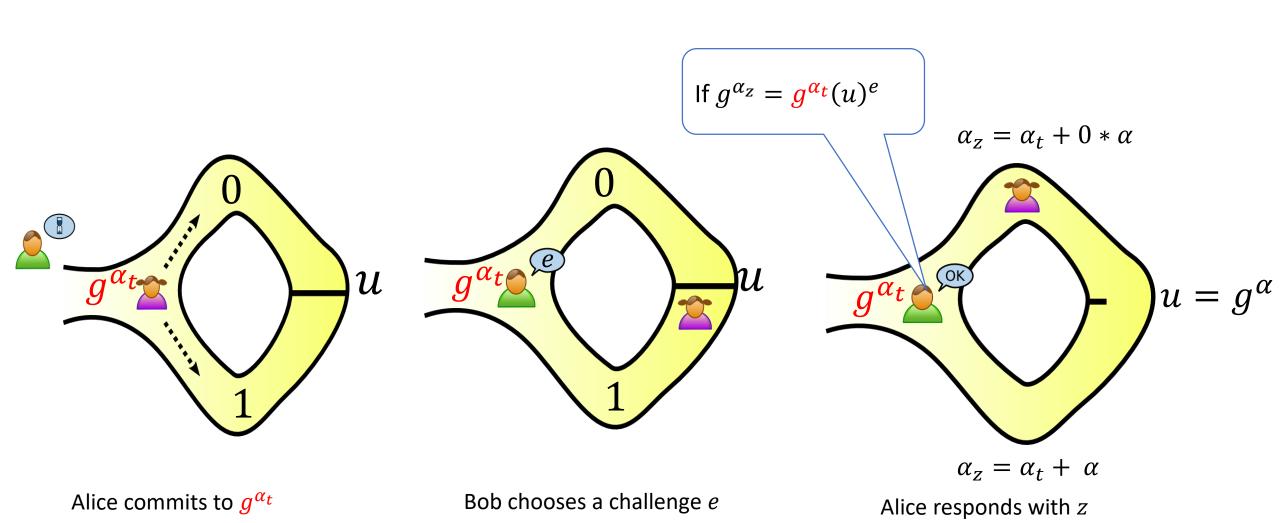


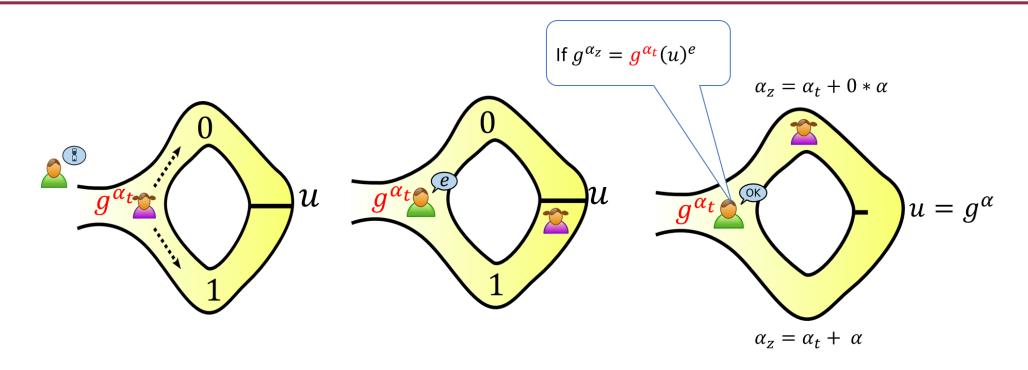
- if $\stackrel{\triangle}{=}$ does't know the key, the proof was accepted with $\frac{1}{2^n}$.
- learns nothing about the magic code

Identification for Discrete logarithm

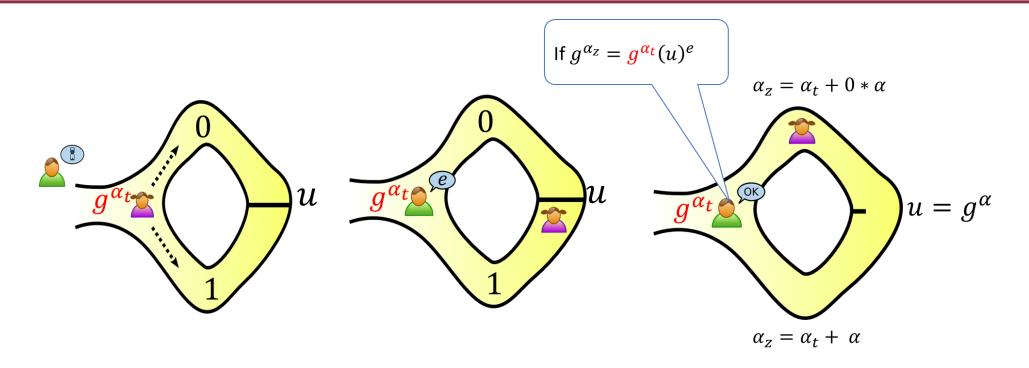


Schnorr Identification





- if a doesn't know the key, the proof was accepted with 1/2.
- \triangle learns nothing about the magic code (α is covered by α_t)



- if a doesn't know the key, the proof was accepted with 1/2.
- Repeat the game n times, if ... doesn't know the key, accepted with $1/2^n$.
- How about choose $e \leftarrow Z_q$, (q entrances rather than 2)?

20/64

Schnorr Identification

$$u = g^{\alpha}$$

$$\frac{P(\alpha)}{\alpha_{t}} \leftarrow g^{\alpha_{t}}$$

$$u_{t} \rightarrow c \leftarrow C$$

$$\alpha_{z} \leftarrow \alpha_{t} + \alpha c \mod q$$

$$g^{\alpha_{z}} \stackrel{?}{=} u_{t} \cdot u^{c}$$

- Challenge space $C = Z_q$
- Conversation: (u_t, c, α_z) is said to be valid if the verification passes

Direct Attacker

• An attacker without knowing α would like to pass the verification.

$$\frac{P(\alpha)}{\alpha_{t}} \stackrel{u = g^{\alpha}}{=} \frac{V(u)}{\underline{V(u)}}$$

$$\frac{u_{t}}{\alpha_{t}} \stackrel{u_{t}}{=} \frac{v_{t}}{\alpha_{t}} \stackrel{u_{t}}{=} \frac{v_{t}}{\alpha_{t}}$$

$$\frac{u_{t}}{\alpha_{z}} \stackrel{c}{=} \frac{c}{\alpha_{t}} \stackrel{c}{=} \frac{v_{t}}{\alpha_{t}} \stackrel{d}{=} \frac{v_{t}}{\alpha_{t}} \stackrel{d}{=}$$

If the attacker can return valid respond α_z for a random c with probability ϵ

it can return valid respond α'_z for a random c' with probability $\epsilon - 1/q$ [Theorem 19.1, DS]

With
$$c$$
, c' and
$$\begin{cases} \alpha_z = \alpha_t + \alpha c \bmod q \\ \alpha'_z = \alpha_t + \alpha c' \bmod q \end{cases}$$

we can find (or extract) α with probability $\epsilon(\epsilon-1/q)$ (which is the discrete logarithm problem)

What we have shown: "proof of knowledge"

• If someone passes the verification of Schnorr Identification,

• We must have the someone knows the discrete logarithm of $u=g^{\alpha}$

Eavesdropper Attacker

Actually, the attacker may see several valid conversations $(u_t^i, c^i, \alpha_z^i)_{i=1,2,3,...}$ does "proof of knowledge" hold?

$$\frac{P(\alpha)}{\alpha_{t}} \qquad u = g^{\alpha} \qquad \underline{\underline{V(u)}}$$

$$\alpha_{t} \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_{q}, \ u_{t} \leftarrow g^{\alpha_{t}} \qquad u_{t} \qquad c \stackrel{\mathbb{R}}{\leftarrow} \mathcal{C}$$

$$\frac{u_{t}}{\alpha_{z}} \qquad c \stackrel{\mathbb{C}'}{\leftarrow} \qquad c \stackrel{\mathbb{R}}{\leftarrow} \mathcal{C}$$

$$\alpha_{z} \leftarrow \alpha_{t} + \alpha c \mod q$$

$$\underline{\alpha_{z}} \qquad \underline{\alpha'_{z}} = \alpha_{t} + \alpha c \mod q$$

$$\underline{g^{\alpha_{z}} \stackrel{?}{=} u_{t} \cdot u^{c}}$$

If the attacker can return valid respond α_z for a random c with probability ϵ

it can return valid respond α'_z for a random c' with probability $\epsilon-1/q$ [Theorem 19.1, DS]

We can generate what Eav attacker learns $\left(u_t^i,c^i,\alpha_z^i\right)_{i=1,2,3...}$ Sample $\alpha_z^i \leftarrow Z_q$, $c^i \leftarrow Z_q$ compute $u_t^i = g^{\alpha_z^i}/u^{c^i}$

$$\text{With } c, c' \text{ and } \begin{cases} \alpha_z = \alpha_t + \alpha c \bmod q \\ \alpha'_z = \alpha_t + \alpha c' \bmod q \end{cases}$$

we can extract α with probability $\epsilon(\epsilon - 1/q)$ (which is the discrete logarithm problem)

What we have shown: honest verifier zero-knowledge

We can generate what Eav attacker learns $\left(u_t^i,c^i,\alpha_z^i\right)_{i=1,2,3\dots}$ Sample $\alpha_z^i\leftarrow Z_q$, $c^i\leftarrow Z_q$ compute $u_t^i=g^{\alpha_z^i}/u^{c^i}$

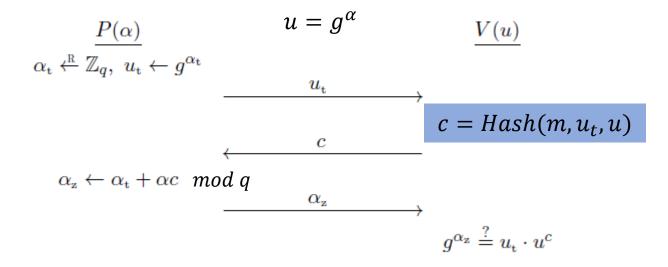
Honest verifier zero-knowledge says that:

without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

Schnorr Identification

- Correctness(Completeness): If P and V execute the protocol honestly, the proof is accepted.
- Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) α
- **Honest verifier zero-knowledge** says that: without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

Identification protocol --- > Signature



The key generation

•
$$\alpha \leftarrow Z_q$$
, $u = g^{\alpha}$

•
$$sk = \alpha, vk = u$$

• To sign *m*

•
$$\alpha_t \leftarrow Z_q$$
, $u_t = g^{\alpha_t}$

•
$$c = Hash(m, u_t, u)$$

•
$$\alpha_z = \alpha_t + \alpha c \mod q$$

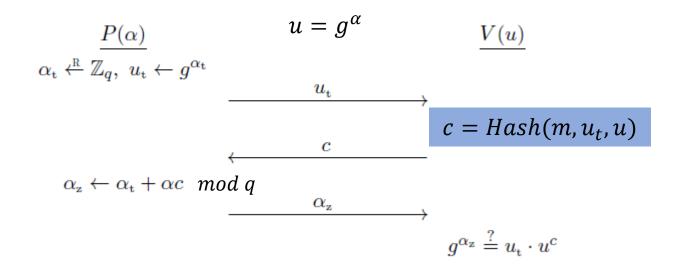
• Return
$$\sigma = (u_t, c, \alpha_t)$$

Verification

•
$$g^{\alpha_z} = ? u_t \cdot u^c$$

Schnorr Signature is UF-CMA secure, under the discrete logarithm assumption

Identification protocol --- > Signature



- The key generation
 - $\alpha \leftarrow Z_a$, $u = g^{\alpha}$
 - $sk = \alpha . vk = u$
- To sign *m*
 - $\alpha_t \leftarrow Z_q$, $u_t = g^{\alpha_t}$
 - $c = Hash(m, u_t, u)$
 - $\alpha_z = \alpha_t + \alpha c \mod q$
 - Return $\sigma = (u_t, c, \alpha_t)$

Soundness (discrete log)

Unforgeability

Hash is random oracle

Chosen Message Attack

- Verification
 - $g^{\alpha_Z} = ? u_t \cdot u^c$

Honest verifier zero-knowledge

History of Schnorr signature

Schnorr invented Schnorr signature in 1989

It was covered by U.S. Patent which expired in February 2008.

• In 1991, the National Institute of Standards (NIST) considered a number of viable candidates. Because the Schnorr system was protected by a patent, NIST opted for a more ad-hoc signature scheme: (EC)DSA

- Security: Schnorr > ECDSA
- Deployment: Schnorr < ECDSA

Identification for Decisional Diffie-Hellman ID_{DDH}

Given $(g, u, v = g^{\beta}, w = u^{\beta})$ with witness β , P wants to prove that it knows β

Identification for Decisional Diffie-Hellman (DDH)

Given $(g, u, v = g^{\beta}, w = u^{\beta})$ with witness β , P wants to prove that it knows β

- Correctness(Completeness): If P and V exact the protocol honestly, the proof is accepted.
- Soundness (proof-of-knowledge): If the proof is accepted, we can extract the witness (discrete log) α
- Honest verifier zero-knowledge says that: without knowing the witness (discrete logarithm), we can generate (simulate) the valid transaction efficiently

$$eta_z \leftarrow Z_q$$
, $c \leftarrow Z_q$, $v_t = \frac{g^{eta_z}}{v^c}$, $u_t = g^{eta_z}/u^c$

A short summary

 Identification protocol could be used to prove knowing something (discrete log)

• Without the fact of knowing something, nothing else is leaked

Identification protocol could be used to build signature

Identification protocols from discrete log and DDH

SIGMA protocol

SIGMA protocol

Identification protocol is a special case of SIGMA protocol

• We first recall the language and corresponding relation

A NP language $L := \{y \mid \exists x, s. t. (x, y) \in R\}$

Corresponding Relation R

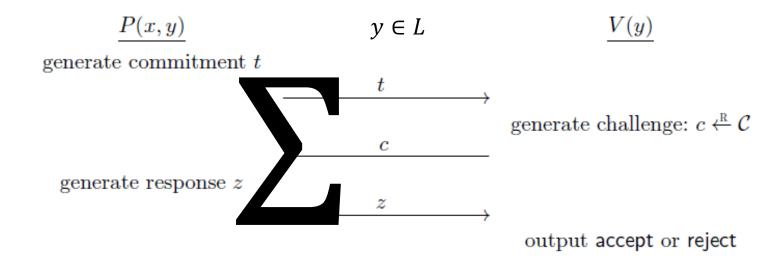
 $y \in L$ if and only if \exists withness x, such that $(x, y) \in R$

 $(g, u, v, w) \in L_{DDH}$ iff \exists witness β such that $v = g^{\beta}$, $w = u^{\beta}$

x is called the witness and y is called the statement

SIGMA protocol

- To prove that P knows witness x of statement y such that $(x, y) \in R$
- Sigma protocol runs as follows and



- Correctness(Completeness): If P and V execute the protocol honestly, the proof is accepted.
- Special Soundness: given valid transection (t, c, z) and (t, c', z'), we could extract x
- Honest verifier zero-knowledge says that: without knowing witness x, we can generate (simulate) the valid

transaction efficiently for $y \in L$

35/64

Identification protocol is a special case of SIGMA

Schnorr, Discrete log relation $\mathcal{R}=\{\;(lpha,u)\in\mathbb{Z}_q imes\mathbb{G}:\;g^lpha=u\;\}$

$$\mathsf{DDH} \; \mathsf{relation} \qquad \mathcal{R} := \left\{ \; \left(\; \beta, \; (u,v,w) \; \right) \in \mathbb{Z}_q \times \mathbb{G}^3 : \; v = g^\beta \; \mathrm{and} \; w = u^\beta \; \right\}$$

Other relations

Given $G = \langle g \rangle$ of order $q, h \in G$, and $u = g^{\alpha}h^{\beta} \in G$ with witness α, β , prove the following relation

$$\mathcal{R} = \left\{ \left((\alpha, \beta), u \right) \in \mathbb{Z}_q^2 \times \mathbb{G} : g^{\alpha} h^{\beta} = u \right\}$$

Okamoto's protocol

$$\mathcal{R} = \left\{ \begin{array}{l} \left(\ (\alpha,\beta), \ u \ \right) \in \mathbb{Z}_q^2 \times \mathbb{G} : \ g^\alpha h^\beta = u \ \end{array} \right\}$$

$$\underbrace{\frac{P((\alpha,\beta),u)}{\beta_{\mathsf{t}} \xleftarrow{\mathbb{R}} \mathbb{Z}_q, \ u_{\mathsf{t}} \leftarrow g^{\alpha_{\mathsf{t}}} h^{\beta_{\mathsf{t}}}}}_{Q^\alpha_{\mathsf{t}} h^\beta_{\mathsf{t}}} \xrightarrow{\qquad \qquad } \underbrace{\frac{V(u)}{c}}_{c \xleftarrow{\mathbb{R}} \mathcal{C}}$$
 Extension of Schnorr
$$\underbrace{\frac{\alpha_{\mathsf{t}} \leftarrow \alpha_{\mathsf{t}} + \alpha c \ mod \ q}{\beta_{\mathsf{t}} \leftarrow \beta_{\mathsf{t}} + \beta c \ mod \ q}}_{q^{\alpha_{\mathsf{t}}} h^{\beta_{\mathsf{t}}} \xrightarrow{\stackrel{?}{=}} u_{\mathsf{t}} \cdot u^c}$$

- Correctness(Completeness): If P and V execute the protocol honestly, the proof is accepted.
- Special Soundness: given valid transection $(u_t, c, \alpha_z, \beta_z)$ and $(u_t, c', \alpha'_z, \beta'_z)$, we could extract α, β
- Honest verifier zero-knowledge says that: without knowing witness x, we can generate (simulate) the valid

transaction efficiently for $y \in L$

AND composition of SIGAMA

Schnorr, Discrete log relation
$$\mathcal{R}=\{\ (\alpha,u)\in\mathbb{Z}_q imes\mathbb{G}:\ g^\alpha=u\ \}$$

$$R_1 \wedge R_2 = \{ (x_1, x_2; h_1, h_2) \in \mathbb{Z}_q^2 \times \mathbb{G}^2 : h_1 = g^{x_1} \text{ and } h_2 = g^{x_2} \}$$

 R_1 and R_2 are Discrete log relations

 $G = \langle g \rangle$ is group of order p

AND composition of SIGAMA: Parallel attempt

How to prove

$$R_1 \wedge R_2 = \{ (x_1, x_2; h_1, h_2) \in \mathbb{Z}_q^2 \times \mathbb{G}^2 : h_1 = g^{x_1} \text{ and } h_2 = g^{x_2} \}$$

$$h_1 = g^{x_1} \ and \ h_2 = g^{x_2}$$

$$\text{Prover} \qquad \qquad \text{Verifier}$$

$$u_1, u_2 \in_R \mathbb{Z}_n$$

$$a_1 \leftarrow g^{u_1}$$

$$a_2 \leftarrow g^{u_2} \qquad \xrightarrow{a_1, a_2} \qquad \qquad c_1, c_2 \in_R \mathbb{Z}_n$$

$$\begin{matrix} c_1, c_2 \\ \leftarrow \end{matrix} & \begin{matrix} c_1$$

Run two Schnorr protocols independently???

AND composition of SIGAMA: Better solution

How to prove

$$R_1 \wedge R_2 = \{ (x_1, x_2; h_1, h_2) \in \mathbb{Z}_q^2 \times \mathbb{G}^2 : h_1 = g^{x_1} \text{ and } h_2 = g^{x_2} \}$$

$$\begin{array}{c} h_1=g^{x_1}\ and\ h_2=g^{x_2}\\ \text{Prover} & \text{Verifier}\\ (x_1=\log_g h_1,x_2=\log_g h_2)\\ u_1,u_2\in_R\mathbb{Z}_n\\ a_1\leftarrow g^{u_1}\\ a_2\leftarrow g^{u_2} & \xrightarrow{a_1,a_2}\\ & c\in_R\mathbb{Z}_n\\ \hline\\ r_1\leftarrow_n u_1+cx_1\ mod\ q\\ r_2\leftarrow_n u_2+cx_2\ mod\ q & \xrightarrow{r_1,r_2}\\ & g^{r_1}\stackrel{?}{=}\ a_1h_1^c\\ g^{r_2}\stackrel{?}{=}\ a_2h_2^c \end{array}$$

The same challenge is applied to two proofs

OR composition of SIGAMA

Schnorr, Discrete log

$$\mathcal{R} = \{ (\alpha, u) \in \mathbb{Z}_q \times \mathbb{G} : g^{\alpha} = u \}$$

AND Composition

$$R_1 \wedge R_2 = \{ (x_1, x_2; h_1, h_2) \in \mathbb{Z}_q^2 \times \mathbb{G}^2 : h_1 = g^{x_1} \text{ and } h_2 = g^{x_2} \}$$

OR Composition

$$R_1 \lor R_2 = \{ (x_1 \ or \ x_2; h_1, h_2) \in Z_q \times G^2 : h_1 = g^{x_1} \ or \ h_2 = g^{x_2} \}$$

 R_1 and R_2 are Discrete log relations

OR composition of SIGAMA

How to prove

$$R_1 \lor R_2 = \{ (x_1 \text{ or } x_2; h_1, h_2) \in Z_q \times G^2 : h_1 = g^{x_1} \text{ or } h_2 = g^{x_2} \}$$

 $h_1 = g^{x_1} \text{ or } h_2 = g^{x_2}$

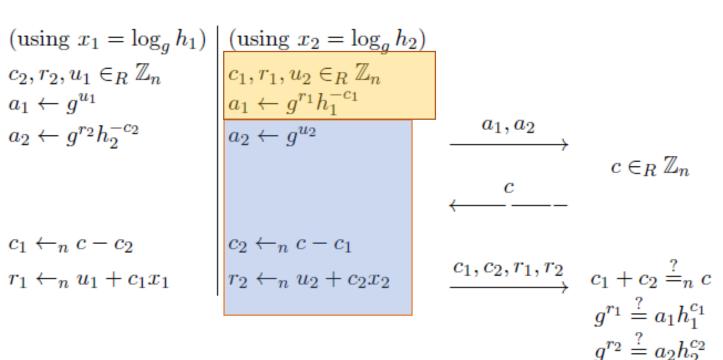
The simulation

The real Schnorr

(using
$$x_1 = \log_g h_1$$
) (using $x_2 = \log_g h_1$)
 $c_2, r_2, u_1 \in_R \mathbb{Z}_n$
 $a_1 \leftarrow g^{u_1}$
 $a_2 \leftarrow g^{r_2} h_2^{-c_2}$ $a_1 \leftarrow g^{u_2}$
 $a_2 \leftarrow g^{u_2}$

Prover

$$c_1 \leftarrow_n c - c_2$$
$$r_1 \leftarrow_n u_1 + c_1 x_1$$



Verifier

•
$$c = c_1 + c_2$$

- Simulate a valid transection for unknown witness but known challenge
- Generate the real Schnorr for known witness but unknown challenge

Question 1: 3 OR composition of SIGAMA

OR Composition

$$R_1 \lor R_2 = \{ (x_1 \text{ or } x_2; h_1, h_2) \in Z_q \times G^2: h_1 = g^{x_1} \text{ or } h_2 = g^{x_2} \}$$

30R Composition

$$R_1 \lor R_2 \lor R_3 = \{ (x_1, x_2 \text{ or } x_3; h_1, h_2, h_3) \in Z_q \times G^2:$$

$$h_1 = g^{x_1} \text{ or } h_2 = g^{x_2} \text{ or } h_3 = g^{x_3} \}$$

- $c = c_1 + c_2 + c_3$
- Simulate two valid transections for unknown witness but known challenge
- Generate a real Schnorr for known witness but unknown challenge

 R_1 , R_2 and R_3 are Discrete log relations

Question 2: AND-OR composition of SIGAMA

AND Composition

$$R_1 \wedge R_2 = \{ (x_1, x_2; h_1, h_2) \in \mathbb{Z}_q^2 \times \mathbb{G}^2 : h_1 = g^{x_1} \text{ and } h_2 = g^{x_2} \}$$

OR Composition

$$R_1 \lor R_2 = \{ (x_1 \text{ or } x_2; h_1, h_2) \in Z_q \times G^2 : h_1 = g^{x_1} \text{ or } h_2 = g^{x_2} \}$$

How about relation $(R_1 \lor R_2) \land (R_3 \lor R_4)$

 R_1 , R_2 , R_3 and R_4 are Discrete log relations

The second Assignment, I will give concrete requirement in next lecture.

Electronic Voting (e-voting)

Candidates:

Alice,

ElGamal Enc for privacy

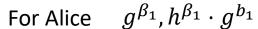
Bob,

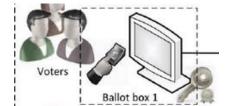
 $G = \langle g \rangle$

Tom,

 $pk := h = g^s, sk := s$

Tony,



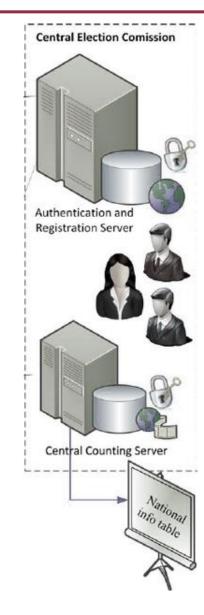


Cheating Voter

 $b_1 = 1000$

Thus, the voter needs to prove this is a ElGamal enc of 0 or 1 While no knowledge of b_1 is leaked

This is what Zero-knowledge proof can solve



OR-composition of ID_{DDH}

- We are ready to give such zero-knowledge proof
- Given $G = \langle g \rangle, pk = u = g^s$
- and ciphertext $v=g^{\beta}$, $e=u^{\beta}\cdot g^{b}$
- Proof the following relation

$$\mathcal{R} := \left\{ \ (\ (b,\beta),\ (u,v,e)\) \ : \ v = g^{\beta}, \ \ e = u^{\beta} \cdot g^b, \ \ b \in \{0,1\} \ \right\}.$$

(u, v, e) is the encryption of 0 or 1 if and only if (g, u, v, e) is a DDH tuple or (g, u, v, e/g) is a DDH tuple

We only need an OR-composition of ID_{DDH} to show that (g,u,v,e) is a DDH tuple or (g,u,v,e/g) is a DDH tuple

Applications: e-voting

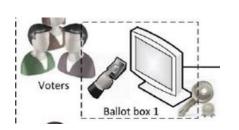
ElGamal Enc for privacy

$$G = \langle g \rangle$$

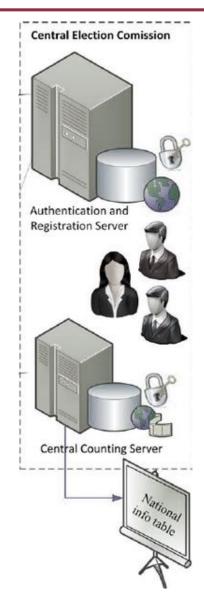
 $pk := u = g^s, sk := s$

For Alice
$$v=g^{\beta_1}$$
, $e=h^{\beta_1}\cdot g^{b_1}$

П



OR-composition proof Π of ID_{DDH} to show that (g,u,v,e) is a DDH tuple $\mathrm{or}(g,u,v,e/g)$ is a DDH tuple



A short summary: SIGMA protocol

SIGMA protocol is a generalization of Identification protocol

• To proof that P knows witness x of statement y such that $(x, y) \in R$

- SIGMA for several relations
- OR and AND composition of SIGMA protocol

Applications: e-voting

2023/3/7 49/64

Zero-knowledge proof

2023/3/7 50/64

Zero-knowledge proof

Zero-knowledge proof is an extension of SIGMA protocol

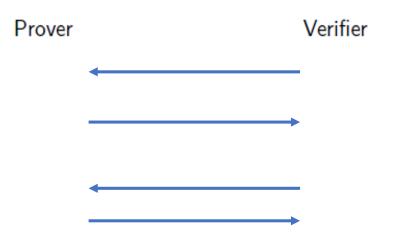
• The interactive is not necessary of 3-pass

The soundness is not necessary of proof-of-knowledge

The zero-knowledge should be hold for any verifier

2023/3/7 51/64

$y \in L$ if and only if \exists withness x, such that $(x, y) \in R$



- Correctness(Completeness): If $y \in L$, P and V execute the protocol honestly, the proof is accepted.
- Soundness: If $y \notin L$, for any (computational) P, V accepts with negligible probability
- Zero-knowledge: For any V, without knowing witness x, we can generate (simulate) the valid transaction efficiently

for $y \in L$

52/64

Zero Knowledge Proof for NP language

- Let L be a NP language
- Prover with input (x, y) wants to prove that $y \in L$

- \blacksquare if $x \in L$, verifier accept
- \blacksquare if $x \notin L$, for any (PPT) prover, verifier will reject
- ightharpoonup Zero-knowledge: any verifier learns nothing about the witness x

2023/3/7 53/64

Zero Knowledge Proof (ZKP) for NP

Theorem [GMW86]
Commitment ---> ZKP for all of NP

Theorem [GMW86]
One-way function ---> ZKP for all of NP

Zero Knowledge Proof for NP

• To prove that \exists input x such that C(x) = y, where C is any polynomial size circuit.

• Circuit *C* could b:

- $ax^2 + bx + c$
- Polynomial function Poly(x)
- Machine learning algorithms
- Etc.....

2023/3/7 55/64

Non-interactive Zero Knowledge (NIZK)

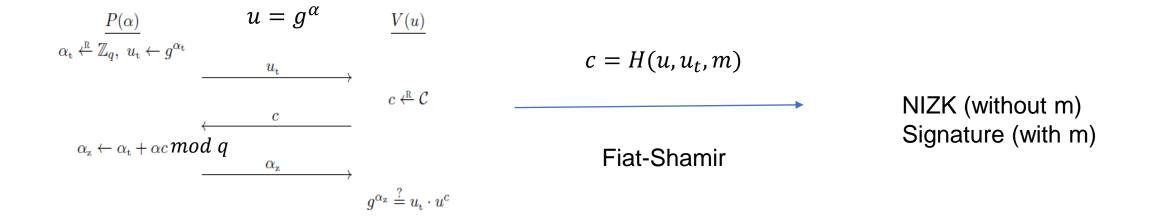
Non-interactive is better than interactive (latency)

• NIZK \rightarrow signature, e-voting, etc.

NIZK only exists for L in BPP, which is not interesting than NP

- However, with the setup of common random string,...
- Or random oracle...

NIZK assuming random oracle



Succinct Non-Interactive Proof (zkSNARK)

• It is better if we have a very small (Succinct) proof

And the verification of the proof is efficient.

This proof is called Succinct Non-Interactive Proof (zkSNARK)

2023/3/7 58/64

zk-SNARK/STARK

- Consider the complexity of Verifier.
- Could it be less than computing R(x, w)?????

• YES!!!!

PCP Theorem [AS,ALMSS,Dinur]: NP statements have polynomial-size PCPs in which the verifier reads only O(1) bits.

Can be made ZK with small overhead [KPT97,IW04]

2023/3/7 59/64

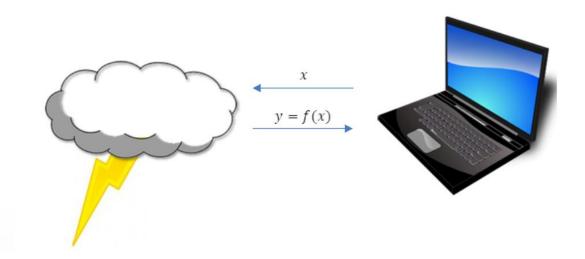
zkSNARK

Verifiable Outsourcing computation

• Blockchain

Verifiable Outsourcing computation

We do not want to trust the cloud, but would like to use its power.



Cloud appends a zkSNARK Π to prove that y = f(x)

zk-SNARK/STARK

	SNARKs	STARKs	Bulletproofs
Algorithmic complexity: prover	O(N * log(N))	O(N * poly-log(N))	O(N * log(N))
Algorithmic complexity: verifier	~O(1)	O(poly-log(N))	O(N)
Communication complexity (proof size)	~O(1)	O(poly-log(N))	O(log(N))
- size estimate for 1 TX	Tx: 200 bytes, Key: 50 MB	45 kB	1.5 kb
- size estimate for 10.000 TX	Tx: 200 bytes, Key: 500 GB	135 kb	2.5 kb
Ethereum/EVM verification gas cost	~600k (Groth16)	~2.5M (estimate, no impl.)	N/A
Trusted setup required?	YES ڃ	NO 😄	NO 😂
Post-quantum secure	NO ڃ	YES 😄	NO 😒
Crypto assumptions	DLP + secure bilinear pairing ڃ	Collision resistant hashes 😄	Discrete log

62/64

• Demo of Schnorr Identification Protocol

2023/3/7 63/64

Materials

• Dan Boneh and Victor Shoup, <u>A Graduate Course in Applied Cryptography</u>, Section 19, 20

• Berry Schoenmakers, Lecture Notes Cryptographic Protocols, Section 4, 5

- Awesome-zero-knowledge-proofs
- https://github.com/matter-labs/awesome-zero-knowledge-proofs

Thank you