
COMP 6712 Advanced Security and Privacy 2022/23

Lecture note 9: Privacy-Enhancing Technologies 3
Secure Multiparty Computation

Donghui Dai, Huaien Zhang

April 21, 2023

In this lecture, we first discuss the concept and definitions for secure computation of the
real-ideal world paradigm. Technically, we introduce two security adversary models under
this paradigm, i.e., semi-honest and malicious security. Second, we give a detailed intro-
duction to the general constructions for secure multi-party computation. Specifically, Yao’s
protocol is illustrated coupled with the GMW. Finally, we introduce the custom protocol:
private set intersection.

1 Secure Computation: Concepts & Definitions
In an informal context, Multi-Party Computation (MPC) is concerned with enabling a col-
lective of participants to acquire knowledge regarding the accurate output of a jointly agreed
upon function applied to their individual, confidential inputs, without disclosing any addi-
tional information. Two or more parties need to perform some agreed-upon computation
while guaranteeing “security” against “adversarial behavior". Specifically, a general secu-
rity requirement should take privacy, correctness, independence of inputs and fairness into
consideration. A conventional method of establishing security is to devise a catalogue of
actions or events that signify a breach of security. However, directly leveraging conditions
to confine the security properties is cumbersome and error-prone since we cannot guarantee
the list could be considered complete. Therefore, we need to define security formally in a
novel real-ideal paradigm that forms the conceptual core of secure computation.

1.1 Real-Ideal Paradigm

The real-ideal paradigm circumvents the potential pitfall mentioned above entirely through
the introduction of an "ideal world" that implicitly encompasses all security assurances,
thereby enabling the definition of security in relation to this ideal world [SS84]. The real-
ideal paradigm consists of two worlds, i.e., the ideal world and the real world.

Ideal World In the ideal scenario, the function F is computed securely by the involved
parties, who confidentially transfer their respective inputs to a completely trusted
third party, designated as the functionality T . Each party has his/her own input xi,
which is transmitted to T . Next, the T simply computes F(x1, ..., xn) and returns

COMP 6712 Advanced Security and Privacy 2022/23

the result to all parties. An adversary in the ideal world may take control over any of
the parties Pi instead of T , the simplicity of the ideal world makes the attack could
be recognized easily since the adversary’s choice input is independent of the honest
parties’.

Real World In the real world, no trusted party exists. As an alternative, all parties must
engage in communication through a prescribed protocol. Protocol π specifies for each
party Pi a “next message" function πi. The function accepts several parameters, in-
cluding the security parameter, the party’s private input xi, a randomized tape, and a
record of the messages that the party Pi has received so far. Subsequently, πi generates
an output, wherein it either issues a directive for the party to send the next message
along with its destination or alternatively terminates the communication and yields
specific outputs as per the instruction. In the real world, an adversary can corrupt
parties.

Security Definition For every real-world adversary A, there exists an ideal adversary A′

s.t. joint distribution (HonestOutput, AdvOutput) is indistinguishable. Namely, there
exists a simulator that could simulate the real world in an ideal world.

Remark 1. In essence, the security of the actual protocol π is ascribed to it if any impact
that an adversary can generate in the real world can also be replicated by a corresponding
adversary in the ideal world. The goal of a protocol is to provide security in the real world
that is equivalent to that in the ideal world.

1.2 Semi-Honest Security

A semi-honest adversary is an entity that engages in the corruption of parties, yet adheres
to the specified protocol. In other words, the corrupt parties run the protocol honestly but
they may try to learn as much as possible from the messages they receive from other parties.
Multiple colluding corrupted parties may collaborate to pool their perspectives, enabling the
acquisition of confidential information. Semi-honest adversaries are also commonly called
passive honest-but-curious since they cannot take any actions other than attempting to
learn private information by observing execution results.

Informally, suppose π is the protocol and F is a functionality. Let C symbolize the
collection of corrupted parties, whilst Sim refers to a simulator algorithm. The ensuing
distribution of random variables may be defined as follows:

• Realπ(κ, C; x1, ..., yn): Execute the protocol with a security parameter κ, wherein each
party Pi operates with integrity by employing its own private input xi. Denote the
ultimate perspective of party Pi as Vi, and its resultant output as yi, we have the
output in the form of { Vi | i ∈ C }, (y1, ..., yn).

• IdealF ,Sim(κ, C; x1, . . . , xn) : Compute (y1, . . . , yn) ← F(x1, . . . , xn)
Output Sim(C, (xi, yi) | i ∈ C), (y1, . . . , yn).

A protocol is considered secure against semi-honest adversaries if the views of corrupted
parties in the real world are indistinguishable from their views in the ideal world.

COMP 6712 Advanced Security and Privacy 2022/23

Definition 1. A protocol π securely realizes function F in the presence of semi-honest ad-
versaries if there exists a simulator Sim such that for every subset of corrupted parties C
and all inputs x1, . . . , xn, the distributions

Realπ(κ, C; x1, ..., xn)

and
IdealF ,Sim(κ, C; x1, . . . , xn)

are indistinguishable (in κ).

1.3 Malicious Security

A malicious adversary, also known as an active adversary, may attempt to violate security
by causing corrupted parties to deviate arbitrarily from the prescribed protocol. Unlike
a semi-honest adversary, a malicious adversary has the power to take any actions during
protocol execution in addition to analyzing the protocol execution. Note that this includes
an adversary who has the ability to control, manipulate, and inject messages arbitrarily onto
the network. Compared to the previous one, security in this setting have two important
additions to consider:

Effect on honest outputs. When the corrupted parties deviate from the protocol, it in-
troduces the possibility of affecting the outputs of honest parties

Extraction. In a secure protocol, honest parties follow a well-defined input, while the input
of a malicious party is not well-defined in the real world. The simulator chooses inputs
for the corrupt parties in the ideal world, which should achieve the same effects as in
the real world. This process is known as extraction.

Informally, suppose A to denote the adversary program and corrupt(A) to denote the set
of corrupted parties. Similarly, corrupt(Sim) represents the set of corrupted parties by the
ideal adversary Sim. To define a secure protocol, we establish distributions for the real and
ideal worlds, where the protocol makes these distributions indistinguishable. This is done in
a similar manner to the definition of security against semi-honest adversaries:

• Realπ,A(κ; {xi | i /∈ corrupt(A)}): The protocol is execute with security parameter κ,
where each honest party Pi(for i /∈ corrupt(A)) runs the protocol honestly using the
given private input xi, and the messages of corrupt parties are chosen according to
A (where A is considered as the protocol’s next-message function for a collection of
parties). The output of each honest party Pi is denoted by yi, and the final view of
party Pi is denoted by Vi. The output is ({Vi | i ∈ corrupt(A), {yi | i /∈ corrupt(A)}).

• IdealF,Sim(κ; {xi | i /∈ corrupt(A)}): Run Sim until it outputs a set of inputs {xi | i ∈
corrupt(A)}. Compute (y1, . . . , yn) ← F(x1, . . . , xn). Then, give {yi|i ∈ corrupt(A)}
to Sim. Let V 󰂏 denote the final output of Sim, we can have:
Output (V 󰂏, yi|i /∈ corrupt(Sim)).

COMP 6712 Advanced Security and Privacy 2022/23

Figure 1: Yao’s Protocol from lecture slide p56.

A protocol is considered secure against semi-honest adversaries if the views of corrupted
parties in the real world are indistinguishable from their views in the ideal world.

Definition 2. A protocol π securely realizes function F in the presence of malicious adver-
saries if for every real-world adversary A there exists a simulator Sim with corrupt(A) =
corrupt(Sim) such that, for all inputs for honest parties {xi | i /∈ corrupt(A)}, the distribu-
tions

Realπ,A(κ; {xi | i /∈ corrupt(A)})
and

IdealF ,Sim(κ; {xi | i /∈ corrupt(Sim)})
are indistinguishable (in κ).

Note that the definition quantifies only over the inputs of honest parties {xi | i /∈
corrupt(A)}).

2 Yao’s Protocol for Secure MPC

Figure 2: A garbled circuit example.

Generally, every computation of function could be transferred to computing a Boolean
circuit. Yao’s protocol is the most popular semi-honest secure (2-party) computation for

COMP 6712 Advanced Security and Privacy 2022/23

Boolean circuits. The main idea behind Yao’s GC approach is quite natural. Fig. 1 demon-
strates the basic workflow of Yao’s protocol. At a very high level, the idea can be described
as follows:

• P1 will produce a “garbled encoding" of the circuit and transmit it to P2. An example
of the garbled circuit is shown in Fig. 2

• P1 and P2 subsequently engage in a specialized interactive subprotocol that enables
P2 to acquire ’garbled encodings’ of their respective inputs, without disclosing any
information about P1’s inputs to P2, and vice versa. This subprotocol ensures that
neither party gains any insight into the other’s inputs.

• After obtaining the ’garbled encodings’ of the circuit and inputs, P2 proceeds to execute
a dedicated evaluation algorithm locally, enabling it to calculate the ’garbled encodings’
of the outputs. An example of the oblivious evaluation of the garbled circuit is shown
in Fig. 3

• P2 subsequently transmits the resulting ’garbled encodings’ of the outputs to P1, which
enables it to calculate the actual outputs while keeping everything else private.

• Ultimately, P1 forwards the computed actual outputs to P2.

Figure 3: A oblivious evaluation example of a garbled circuit.

As an initial step in elaborating on the idea outlined above, we provide a precise and
formal definition of the syntax that characterizes a garbling scheme as shown in Fig 4. By
doing so, we aim to establish a clear framework and set of guidelines that can be used
to design and implement secure cryptographic protocols based on the concept of garbled
circuits.

Definition 3. Yao’s Garbling scheme. A garbling scheme G consists of four polynomial-
time algorithms (Gb, En, Ev, De) respectively [Yak17]:

• The probabilistic circuit garbling algorithm, known as Garble, is called upon as part
of the process:

(F , e, d)
R←− Garble(f)

COMP 6712 Advanced Security and Privacy 2022/23

Figure 4: Yao’s Protocol

where the input f is a boolean circuit. The result F is called a garbled encoding of f ,
the result e is called the input encoding data, and the result d is called the output
decoding data.

• The deterministic input encoding algorithm, called Encode, is invoked during the
procedure:

X ← Encode(e, x)

where e is the input encoding data, and x is a vector of bits. The result X is called a
garbled encoding of x.

• A deterministic garbled circuit evaluation algorithm Evaluation that is invoked as

Y ← Evaluation(F , X)

where F is a garbled encoding of a circuit and X is a garbled encoding of an input
vector. The result Y is called a garbled output.

• A deterministic output decoding algorithm Decode that is invoked as:

y ← Decode(d,Y)

where d is the output decoding data and Y is a garbled output. The result y is either
the special symbol reject or a vector of bits.

Therefore, we can re-express our high-level concept, presented earlier, in the terminology
of garbling schemes as follows [BS20]:

• P1 runs (F , e, d)
R←− Garble(f) and sends F to P2.

• P1 and P2 then execute a special interactive subprotocol that lets P2 obtain X :=
Encode(e, x), where x is the vector comprising both P1’s and P2’s inputs. The P2

knows nothing about P1’ inputs in this step and only X is share between the P1 and
P2.

• P2 executes Y ← Evaluation(F , X) and send the evaluated Y to P1 for decoding.

• P1 runs y ← Decode(d,Y) and send y to P2. The P1 learns nothing other than y.

This is the mathematical expression of Yao’s Protocol.

COMP 6712 Advanced Security and Privacy 2022/23

3 Goldreich-Micali-Wigderson (GMW) Protocol
Computation related to encryption can be viewed as an operation on shared data in secrecy.
In Yao’s Garbled Circuit (GC), the active wire value is secretly shared by letting one player,
called the generator, possess two potential wire labels w0

i and w1
i , and the other player, called

the evaluator, holding the active label wb
i . On the other hand, the GMW protocol [MGW87]

directly splits the wire value into additive shares among the players. Unlike Yao’s GC, the
GMW protocol (or simply "GMW") can naturally extend to more than two parties without
requiring novel techniques.

3.1 GMW Intuition

The GMW protocol is capable of operating on both Boolean and arithmetic circuits. We
begin by presenting the two-party Boolean variant of the protocol, followed by a brief ex-
planation on how it can be extended to more than two parties. In Yao’s protocol, it can be
inferred that players P1 and P2 with inputs x and y respectively, have reached an agreement
on the Boolean circuit C that represents the computed function F(x, y).

It is assumed that the communication between the parties takes place over an asyn-
chronous communication network denoted as C. We also assume that the network provides
secure point-to-point channels, which ensure both message privacy and integrity. The GMW
protocol, which is a two-party version, can be described as follows:

1. For each input bit xi ∈ {0, 1} of the input x ∈ {0, 1}n, Party P1 generates a random
bit ri ∈ {0, 1} and transmits all ri to Party P2.

2. Party P1 then obtains a secret sharing of each xi between itself and P2 by setting its
share to be xi ⊕ ri.

3. Similarly, Party P2 generates random bit masks for its inputs yi and sends them to P1,
secret sharing its input in a similar manner.

Following this step, Party P1 and Party P2 can proceed to evaluate the circuit C gate
by gate. For instance, let us consider a gate G with input wires wi and wj and output wire
wk. The input wires can be split into two shares, such that s1x ⊕ s2x = wx. In this case,
Party P1 holds shares s1i and s1j on wires wi and wj, while Party P2 holds shares s2i and s2j
on the corresponding wires. For the purpose of this discussion, we assume that the circuit
C contains only NOT, XOR and AND gates, without loss of generality.

Interaction is unnecessary for evaluating a NOT or XOR gate. To evaluate a NOT gate,
P1 can flip its share of the wire value, resulting in a flipped shared wire value. For an XOR
gate on wires wi and wj, players compute their output shares by xor-ing the shares they
hold. P1 computes its output share as s1k = s1i ⊕ s1j , and P2 computes its output share as
s2k = s2i ⊕ s2j . The computed shares, s1k and s2k, represent the shares of the active output
value: s1k ⊕ s2k = (s1i ⊕ s1j)⊕ (s2i ⊕ s2j) = (s1i ⊕ s2i)⊕ (s1j ⊕ s2j) = wi ⊕ wj.

On the other hand, evaluating an AND gate requires interaction and the use of a basic
primitive called a 1-out-of-4 OT. From P1’s perspective, its shares s1i and s1j are fixed, and P2

has two boolean input shares, resulting in four possible input options for P2. If P1 knew P2’s

COMP 6712 Advanced Security and Privacy 2022/23

shares, then evaluating the gate under encryption would be easy: P1 could reconstruct the
active input values, compute the active output value, and secret-share it with P2. However,
P1 cannot do that, so it instead prepares a secret share for each of P2’s possible inputs and
runs a 1-out-of-4 oblivious transfer (OT) to transfer the corresponding share.

To accomplish this, P1 chooses a random mask bit r ∈R {0, 1} and prepares a table of
OT secrets:

TG =

󰀳

󰁅󰁅󰁃

r ⊕ S(0, 0)
r ⊕ S(0, 1)
r ⊕ S(1, 0)
r ⊕ S(1, 1)

󰀴

󰁆󰁆󰁄

Here, S = Ss1i ,s
1
j
(s2i , s

2
j) = (s1i ⊕ s2j) ∧ (s1j ⊕ s2j) is the function computing the gate output

value from the shared secrets on the two input wires. P1 and P2 then run an 1-out-of-4
OT protocol, with P1 playing the role of the sender and P2 playing the role of the receiver.
P1 uses table rows as each of the four input secrets, and P2 uses its two bit shares as the
selection to choose the corresponding row. P1 keeps r as its share of the gate output wire
value, and P2 uses the value it receives from the OT execution.

Due to the construction of the OT inputs, players in a two-party setting obtain a secret
sharing of the gate output wire, without learning anything about the other player’s inputs or
intermediate computation values. In effect, only Player 2 (P2) receives messages, and based
on the OT guarantee, it cannot obtain any information about the three OT secrets it did
not select. The only thing P2 learns is its OT output, which is its share of a random sharing
of the output value, and thus leaks no information about the plaintext value on that wire.
Similarly, P1 learns nothing about the selection of P2.

After evaluating all gates, players reveal to each other the shares of the output wires to
obtain the output of the computation.

We now propose an approach for generalizing this to a setting where n players P1, P2, · · · , Pn

evaluate a Boolean circuit F . As before, player Pj secret-shares its input by selecting
ri ∈R {0, 1} for all i ∕= j and sending ri to each Pi. The parties P1, P2, · · · , Pn proceed
to evaluate C gate-by-gate, as follows:

• For an XOR gate, the players locally add their shares. No interaction is required, and
correctness and security are guaranteed.

• For an AND gate c = a ∧ b, let a1, · · · , an and b1, · · · , bn denote the shares of a and b,
respectively, held by the players. Consider the identity:

c = a ∧ b = (a1 ⊕ · · ·⊕ an) ∧ (b1 ⊕ · · ·⊕ bn)

= (
n󰁐

i=1

ai ∧ bi)⊕ (
󰁐

i ∕=j

ai ∧ bj)

Each player Pj computes aj ∧ bj locally to obtain a sharing of ⊕n
i=1ai ∧ bi. Further, each

pair of players Pi and Pj jointly computes the shares of ai ∧ bj using the two-party GMW
protocol as described earlier. Finally, each player outputs the XOR of all obtained shares as
the sharing of the result a ∧ b.

COMP 6712 Advanced Security and Privacy 2022/23

3.2 BGW protocol

An effective multi-party protocol for secure computation was proposed by Ben-Or, Gold-
wasser, and Wigderson [WOG88], referred to as the "BGW" protocol. Concurrently, Chaum,
Crépau, and Damgård published a somewhat similar protocol [CCD88], and the two are of-
ten considered in tandem. For the sake of clarity, we outline the BGW protocol for n parties
here, which is relatively easy to grasp.

The BGW protocol facilitates the evaluation of an arithmetic circuit over a field F, which
includes addition, multiplication, and multiplication-by-constant gates. The protocol is heav-
ily dependent on Shamir secret sharing [Sha79], which utilizes the homomorphic property
of Shamir secret shares in a unique way—the underlying shared value can be manipulated
obliviously through the appropriate manipulations to the individual shares.

The process of Shamir secret sharing involves representing a value v in the field F as [v],
denoting the fact that the parties possess Shamir secret shares of v. This is achieved by a
dealer who chooses a random polynomial p of degree at most t, such that p(0) = v. Each
party, denoted by Pi, receives a share p(i), which together with the shares of other parties
forms the complete secret sharing of v. The parameter t represents the threshold of the
sharing, implying that a group of up to t parties cannot obtain any information about the
original value v.

The key feature of the BGW protocol is that for every wire w in the arithmetic circuit, the
parties hold a secret-sharing [vw] of the value vw on that wire. This invariant is maintained
throughout the protocol, and forms the foundation for secure computation. To elaborate on
the protocol, we provide a brief outline of its execution, which involves performing operations
on the secret shares while ensuring the invariant is preserved at each step.

Addition Gate: To compute the output of an addition gate, parties collectively hold
shares of the incoming wires, [vα] and [vβ], and aim to get a sharing of [vα + vβ]. The
corresponding polynomials pα(x) and pβ(x) can be locally added by each party to produce
a new set of shares pγ(i) = pα(i) + pβ(i), where pγ(x) is a polynomial with degree at most t.
Since pγ(0) = vα+vβ, the resulting values comprise a valid sharing of [vα+vβ]. Remarkably,
this computation requires no communication among the parties.

Multiplication Gate: This kind gate is more complicated. To obtain a sharing of
[vα · vβ], parties hold shares of the incoming wires [vα] and [vβ]. Each party can locally
multiply their shares to obtain a point on the polynomial q(x) = pα(x) · pβ(x). However, the
resulting polynomial can have a degree as high as 2t, which is not acceptable. The BGW
protocol uses "Beaver triples" to address this issue, where the parties jointly generate triples
(ai, bi, ci) such that ci = ai · bi. Using these triples, a new polynomial with degree at most t
can be constructed to share the same value as the original polynomial on the input points.
This technique requires some communication among the parties but is still practical. Once
parties obtain a valid sharing of [vα · vβ], they can move on to the next gate in the circuit.

To address the problem of excessive degree in the secret sharing scheme, the parties take a
crucial step of degree reduction. Each party Pi has a value q(i), which is part of a polynomial
of degree at most 2t. The objective is to obtain a valid secret-sharing of q(0), but with the
correct threshold.

An important observation is that q(0) can be expressed as a linear combination of the
shares held by the parties. Specifically,

COMP 6712 Advanced Security and Privacy 2022/23

q(0) =
2t+1󰁛

i=1

λiq(i)

where λi denotes the appropriate Lagrange coefficients. Therefore, the degree-reduction
step proceeds as follows.

First, each party Pi generates and distributes a threshold-t sharing of [q(i)]. It is note-
worthy that each party selects a polynomial of degree at most t, whose constant coefficient
is q(i). Next, the parties perform local computations to compute [q(0)] =

󰁓2t+1
i=1 λi[q(i)]. It

is important to note that this expression involves addition and multiplication-by-constant
operations applied to secret-shared values.

Overall, this degree-reduction step enables the parties to obtain a valid secret-sharing of
q(0) with the appropriate threshold, thereby avoiding the problem of excessive degree in the
secret sharing scheme.

To obtain a valid secret-sharing of q(0) with the desired threshold, a degree-reduction
step is necessary. Each party Pi holds a value q(i) from a polynomial of degree at most 2t.
To reduce the degree of the polynomial, the parties observe that q(0) can be expressed as a
linear function of the party’s shares. Specifically, the Lagrange coefficients λi can be used to
obtain q(0) as a summation of each party’s share.

In the degree-reduction step, each party generates and distributes a threshold-t sharing of
[q(i)], where q(i) is a polynomial of degree at most t with constant coefficient q(i). The parties
then use local computations to sum the shared values and obtain [q(0)]. It is important to
note that since the values [q(i)] were shared with threshold t, the final sharing of [q(0)] also
has threshold t.

However, it is important to remember that the BGW protocol’s multiplication gates
require communication and interaction, in which parties must send shares of [q(i)]. To
ensure the protocol’s security, it is necessary to have 2t+1 ≤ n, as otherwise, q(0) may have
degree 2t, and the n parties may not have enough information to determine its value. Hence,
the BGW protocol is secure against t corrupt parties, provided that 2t < n (i.e., an honest
majority).

When it comes to output wires, the parties will eventually hold shares of the value [vα]
on the wire α. Each party can simply broadcast its share of this value to enable all parties
to learn vα.

4 Custom Protocols
Until now, we have discussed generic circuit-based protocols as the main class of secure com-
putation protocols. However, circuit-based protocols are limited by the linear bandwidth
cost in the size of the circuit, which can become prohibitively expensive for large compu-
tations. Moreover, the overhead associated with circuit-based computation on large data
structures is significant when compared to using a Random Access Machine (RAM) repre-
sentation. To address this, one approach is to incorporate sublinear data structures into
generic circuit-based protocols.

Alternatively, a customized protocol may be designed for a specific problem. However,
this approach has some significant disadvantages over using a generic protocol. Firstly,

COMP 6712 Advanced Security and Privacy 2022/23

it requires the design and proof of security for a custom protocol. Secondly, it may not
integrate with generic protocols, so even if an efficient custom protocol for computing a
specific function exists, it may not be possible to use it without also developing methods
for connecting it with a generic protocol. Finally, while generic protocols have hardening
techniques, it may not be possible to (efficiently) harden a customized protocol to work in a
malicious security setting.

Despite these disadvantages, several specialized problems benefit from tailored solutions,
and the performance gains possible with custom protocols can be substantial. In this work,
we briefly review one such practically important problem: private set intersection.

4.1 Private Set Intersection (PSI)

The objective of Private Set Intersection (PSI) is to enable a group of parties to jointly
compute the intersection of their input sets without revealing any additional information
about the sets, except for the upper bounds on their sizes. While protocols for PSI can
be constructed based on generic Secure Multi-Party Computation (MPC) [HEK12], custom
protocols that leverage the structure of the problem can achieve better efficiency.

First, we use a simple and vivid case shown in the figure 5 to illustrate the PSI. In this
figure, Bob wants to know whether Alice has a number yi in the set X. Hence, they send
holding sets to PSI and calculate the intersection set to solve Bob’s problem. Obviously,
we can use hash function to calculate the key values and send to PSI, but this approach is
not secure, especially when the numbers have a low entropy, e.g., phone numbers. Another
promising approach is using Diffie-Hellman algorithm, but its drawback is a little time-
consuming.

Figure 5: A motivating example of PSI

We will now present the current state-of-the-art two-party PSI protocol, as outlined
in [KKRT16]. This protocol is built upon the protocol proposed in [PSSZ15], which heavily
relies on Oblivious PRF (OPRF) as a subroutine. OPRF is a type of secure multi-party
computation (MPC) protocol that allows two players to compute a pseudorandom function
(PRF) F in such a way that the player who holds the PRF key k never learns the input x held
by the other player, who in turn obtains Fk(x). In what follows, we will first describe how PSI
can be obtained from OPRF and then provide a brief overview of the OPRF construction.
The main improvement in [KKRT16] is a faster OPRF.

Obtaining PSI from OPRF. We will describe the Pinkas-Schneider-Segev-Zohner
(PSSZ) construction [PSSZ15], which builds PSI from an OPRF. To be specific, we will
describe the parameters used in PSSZ when the two parties have roughly the same number
n of items.

COMP 6712 Advanced Security and Privacy 2022/23

The PSSZ protocol relies on Cuckoo hashing [PR04], which uses three hash functions. To
assign n items into b bins using Cuckoo hashing, we first select three random hash functions
h1, h2, and h3 from 0, 1∗ to [b], and initialize empty bins B[1, · · · , b]. To hash an item x,
we check if any of the bins B[h1(x)], B[h2(x)], or B[h3(x)] are empty. If an empty bin is
found, we place x in that bin and terminate. Otherwise, we choose a random i ∈ 1, 2, 3,
evict the item currently in B[hi(x)], and replace it with x. We then recursively try to insert
the evicted item. If this process does not terminate after a certain number of iterations, then
the final evicted element is placed in a special bin called the stash.

PSSZ uses Cuckoo hashing to implement PSI. Suppose party P1 has input set X and
party P2 has input set Y , where |X| = |Y | = n. Party P2 maps its items into 1.2n bins using
Cuckoo hashing, along with a stash of size s. At this point, party P2 has at most one item
per bin and at most s items in its stash. Party P2 pads its input with dummy items so that
each bin contains exactly one item and the stash contains exactly s items.

To obtain private set intersection, the two parties in the protocol of [KKRT16] execute
1.2n + s instances of an Oblivious PRF (OPRF). The protocol uses the Pinkas-Schneider-
Segev-Zohner(PSSZ) construction [PSSZ15], which builds PSI from an OPRF. In the i-th
OPRF instance, P2 acts as the receiver and inputs each of its 1.2n+ s items to the OPRF.
The PRF evaluated in this instance is denoted by F (ki, ·). If P2 has mapped item y to bin
i using Cuckoo hashing, then P2 gains knowledge of F (ki, y); if y is mapped to position j in
the stash, then P2 learns F (k1.2n+j, y).

On the other hand, P1 can compute F (ki, ·) for any i. So, P1 computes sets of candidate
PRF outputs:

H = {F (khi(x)
, x)|x ∈ X and i ∈ {1, 2, 3}}

S = {F (k1.2n+j, x)|x ∈ X and j ∈ {1, · · · , s}}

To identify the intersection of X and Y , P1 randomly permutes the elements of H and S
and sends them to P2. P2 can then check for intersections as follows: if an item y is mapped
to the stash, P2 verifies whether the associated output of the OPRF is present in S. On
the other hand, if an item y is mapped to a hashing bin, P2 verifies whether the associated
OPRF output is present in H.

The security of the protocol against a semi-honest P2 is based on the pseudorandomness of
the PRF outputs. For an item x in X but not in Y , the corresponding PRF outputs F (ki, y)
are pseudorandom. The PRF outputs should also remain pseudorandom under related keys
to ensure the safety of instantiating the PRF instances with related keys.

The protocol is considered correct as long as the PRF does not introduce further collisions,
meaning that for x ∕= x′, F (ki, x) ∕= F (ki′ , x

′). Proper parameter setting is crucial to prevent
such collisions.

A more efficient OPRF construction for the Private Set Intersection (PSI) protocol was
introduced in [KKRT16]. The construction is based on the observation that the code C does
not necessarily need to have the full set of properties of error-correcting codes. The resulting
pseudorandom codes enable a 1-out-of-∞ Oblivious Transfer (OT) protocol that can be used
to produce an efficient PSI.

In particular,

COMP 6712 Advanced Security and Privacy 2022/23

• The method does not rely on decoding, hence the code does not need to be efficiently
decodable.

• The requirement is that for all possibilities r and r0, the Hamming weight of C(r) ⊕
C(r0) should be at least the computational security parameter k. Although it suffices
for this Hamming distance guarantee to hold with overwhelming probability over the
choice of C, there are some subtle nuances to be aware of, which we will discuss in
greater detail.

Let us assume that C is a random oracle with suitably long output for the sake of
convenience. It is generally challenging to find a near-collision when C is long enough. This
means it is hard to find values r and r0 such that C(r) ⊕ C(r0) has a low (less than a
computational security parameter k) Hamming weight. A pseudorandom code (PRC) with
an output length of k = 4k is sufficient to make near-collisions negligible.

A pseudorandom code (PRC) can be defined as a function C (or family of functions, in
our standard model instantiation) that holds coding-theoretic properties, namely, minimum
distance, in a cryptographic sense.

By relaxing the requirement on C from an error-correcting code to a pseudorandom code,
we eliminate the a-priori bound on the size of the receiver’s choice string. This means that
the receiver can use any string as its choice string, and the sender can associate a secret value
H(qj ⊕ [C(r′) · s]) with any string r′. As discussed above, the receiver can only compute
H(tj) = H(qj ⊕ [C(r) · s]), the secret corresponding to its choice string r. The property of
the PRC is such that, with overwhelming probability, all other values of qj ⊕ [C(r′) · s] (that
a polytime player may ever ask) differ from tj in a way that would require the receiver to
guess at least k bits of s.

The above 1-out-of-∞ OT can be viewed as a kind of OPRF. Intuitively, r 󰀁→ H(q⊕[C(r)·
s]) is a function that the sender can evaluate on any input, whose outputs are pseudorandom,
and which the receiver can evaluate only on its chosen input r.

The use of 1-out-of-∞ oblivious transfer (OT) as an oblivious pseudorandom function
(OPRF) involves two main subtleties:

• The receiver obtains more information than just the output of the "PRF." Specifically,
the receiver learns t = q ⊕ [C(r) · s], rather than just H(t).

• The protocol is designed to compute many instances of the "PRF" with related keys.
Specifically, s and C are shared among all instances.

According to [KKRT16], this construction can be securely employed in place of the OPRF
in the PSSZ protocol. This technique can also scale to support private intersections of sets,
regardless of the number of elements, over a wide area network in less than 7 seconds with
n = 220.

Although pairwise intersections can be computed iteratively to achieve set intersection
of multiple sets, extending the above 2PC PSI protocol to the multi-party setting is not
straightforward. Several challenges must be addressed, such as protecting the information
on set intersection that one player gains during 2PC computation. [KMP+17] proposed an
efficient extension of the above PSI protocol to the multi-party setting.

COMP 6712 Advanced Security and Privacy 2022/23

References
[BS20] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft

0.5, 2020.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally
secure protocols. In Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 11–19, 1988.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are
garbled circuits better than custom protocols? In NDSS, 2012.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious prf with applications to private set intersection. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 818–829, 2016.

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
Practical multi-party private set intersection from symmetric-key techniques. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1257–1272, 2017.

[MGW87] Silvio Micali, Oded Goldreich, and Avi Wigderson. How to play any mental game.
In Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC,
pages 218–229. ACM New York, NY, USA, 1987.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algo-
rithms, 51(2):122–144, 2004.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:
Private set intersection using permutation-based hashing. In 24th {USENIX}
Security Symposium ({USENIX} Security 15), pages 515–530, 2015.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[SS84] Goldwasser Shafi and Micali Silvio. Probabilistic encryption. Journal of computer
and system sciences, 28(2):270–299, 1984.

[WOG88] Avi Wigderson, MB Or, and S Goldwasser. Completeness theorems for noncryp-
tographic fault-tolerant distributed computations. In Proceedings of the 20th
Annual Symposium on the Theory of Computing (STOC’88), pages 1–10, 1988.

[Yak17] Sophia Yakoubov. A gentle introduction to yao’s garbled circuits. preprint on
webpage at https://web. mit. edu/sonka89/www/papers/2017ygc. pdf, 2017.

