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Abstract

In this lecture, we explore the fundamentals of TCP/IP, the implementation of
SSL/TLS, and the role of HTTPS in secure communication. We begin by delving
into the TCP/IP model, its layered structure, and the primary protocols involved.
Next, we discuss the SSL/TLS protocol, which provides secure, encrypted com-
munication between clients and servers over the internet. We examine the hand-
shake mechanisms, cipher suites, and certificate-based authentication employed
in SSL/TLS. Finally, we introduce HTTPS, a secure version of HTTP that em-
ploys SSL/TLS to protect sensitive information transmitted between users and
websites, while also highlighting the results and potential risks associated with CA
Misissuance.

1 TCP/IP

TCP/IP (Transmission Control Protocol/Internet Protocol) is a suite of communication protocols
that form the foundation of the internet and facilitate data transmission and communication between
computers and networks. Introduced in the mid-1970s, TCP/IP was initially developed by the United
States Department of Defense for its ARPANET project and has since become the standard protocol
for computer networking.

The TCP/IP model consists of four layers, which are responsible for different aspects of data
communication. These layers are:

* Application Layer: The Application Layer is the topmost layer in the TCP/IP model and
is responsible for providing the interface between the user applications and the underlying
network. This layer includes protocols such as HTTP (Hypertext Transfer Protocol), FTP
(File Transfer Protocol), and SMTP (Simple Mail Transfer Protocol) that enable users to
access, share, and exchange data over the internet.

* Transport Layer: The Transport Layer is responsible for providing reliable, end-to-end
communication between the source and destination devices. The two primary protocols used
in this layer are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).
TCP provides a connection-oriented, reliable communication service, while UDP offers a
connectionless, faster, but less reliable service.

* Network Layer: The Network Layer is responsible for routing and forwarding data packets
between networks. This layer uses the Internet Protocol (IP) to assign unique IP addresses
to devices and determine the best path for data transmission. The Network Layer ensures
that data packets are delivered to the correct destination, even if the source and destination
devices are on different networks.

* Link Layer: The Link Layer, also known as the Data Link Layer or the Network Interface
Layer, is responsible for the physical transmission of data over the network. This layer
includes protocols such as Ethernet and Wi-Fi, which handle the process of converting data
into electrical signals or radio waves and transmitting them over the network medium, such
as cables or wireless channels. The Link Layer adds a header and footer to the data packet,
creating a frame that encapsulates the information from the higher layers.



2 Secure Socket Layer
In this section, we first give a overall introduction about the architecture of secure socket layer (SSL),
and introduce the two important parts of it, i.e., the record layer protocol and the handshake layer,

respectively.

2.1 Architecture
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Figure 1: SSL architecture on page 17, lecture slides 5.

The architecture of SSL is shown in Fig. [T} The SSL architecture is built on top of the existing internet
communication protocols, i.e., the Internet Protocol (IP) and the Transmission Control Protocol
(TCP). IP provides the basic routing and addressing functions necessary for data transmission over
the internet, while TCP provides reliable data transfer and flow control mechanisms. The SSL record
protocol is responsible for encrypting and authenticating the data that is transmitted between a client
and a server. The SSL handshake protocol is responsible for establishing a secure connection between
a client and a server. This protocol operates at the session layer, just above the SSL record protocol.

The procedure of SSL including four parts. Firstly, the client establishes a TCP connection with
the server. Then, the authenticate server and the client establish keys through negotiate (agree on)
algorithms. After that, the SSL can be used to ensure the security and privacy of data being transferred
from one system or device to another. After the data being transferred, the TCP connection is closed.

2.2 Record-layer Protocol

The record-layer protocol is built on the reliable communication through TCP and the session key
established by the handshake process. There are four stages in record layer, including fragment,
compress, authenticate and encrypt, as shown in Fig.[2] The application data, firstly, is fragmented
into multiple pieces where each fragment is processed by the following steps respectively. The
fragment is compressed and the massage authenticated code (MAC) generated by the MAC algorithm
(e.g., HMAC MDS5 and SHA256) is attached. Then, the data is encrypted by the encryption algorithm
(e.g., AES or DES). Finally, the SSL record header is appended to the start of the message.

There are three types of method of assembling encryption and MAC:

o MAC-then-Encrypt. MAC-then-Encrypt is a method used to secure data in which a MAC is
generated for the plaintext message first, and then the plaintext message and MAC are together
encrypted to produce a ciphertext. This method does not provide any integrity on the ciphertext since
we know nothing about the information about the data is authentic or spoofed.

e Encrypt-and-MAC. In Encrypt-and-MAC method, MAC is generated based on the plaintext
message, and the message is encrypted without the MAC. The MAC and the encrypted message are
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Figure 2: Architecture of record protocol on page 21, lecture slides 5.

sent together. This method also does not provide integrity on the message again, since the MAC is
taken against the plaintext.

e Encrypt-then-MAC. Encrypt-then-MAC is also used to secure data where the plaintext message
is first encrypted, and a MAC is generated for the encrypted message. The resulting MAC is then
appended to the ciphertext. This method provides both confidentiality and data integrity and is
considered to be more secure than the former two methods, as the MAC is computed over the

encrypted message, making it impossible for an attacker to modify the ciphertext without invalidating
the MAC.

2.3 Handshake Layer

The handshake layer is the most complex part in SSL. It allows the server and client to authenticate
each other. The server and client negotiate encryption, MAC algorithm and cryptographic keys before
transmitting the application data.

AKE] is a simple protocol making use of a Certificate Authority (CA), which bind the identities to
public keys through certificates.

Certp . denotes P’s certificate, binding his identity idp to his public keys for encryption and
signing.

Encp(m) . denotes an encryption of the message m under P’s public encryption key.
Sigp(m) . denotes a signature on the message m under P’s public verification key.
K . denotes the set of session keys.

R . denotes a large set, which will be used to generate random nonces.

The client and server firstly choose random keys from the two sets K and R. Each user will verify
the certificate it receives, and the client should also verify the signature and the message.

A more complex handshake method is introduced in SSLv2. The main difference between the SSLv2
handshake and the AKE1 handshake is that the master key of SSLv2 is constructed by the two keys,
i.e., the client key K and the server key K.



3 The development of SSL and TLS

Transport Layer Security (TLS) and secure Socket Layer(SSL) are the protocols designed to
provide communications security over a computer network.The SSL (Secure Sockets Layer) protocol
has three versions, namely SSLv1, SSLv2, and SSLv3. TLS (Transport Layer Security) is a product
of standardizing SSLv3, and serves the same purpose of providing secure communication between
web browsers and web servers.

Remark 3.1. A variety of high-level application protocols, such as HTTP, FTP, TELNET, can be
transparently established on top of the SSL/TLS protocol layer.

TLS/SSL consists of two parts:

* a handshake protocol that performs authenticated key exchange to establish the shared keys.

* a record-layer protocol that uses those shared keys to encrypt/authenticate the parties’
communication.

3.1 SSL/TLS History

In 1994, Netscape Communications Corporation introduced the first web browser, Netscape Navigator,
and also introduced the HTTPS protocol, which used SSL encryption. This was the origin of SSL.

SSL version 1.0 was never publicly released because of serious security flaws in the protocol.

Version 2.0, after being released in February 1995 was quickly discovered to contain a number of
security and usability flaws.

These flaws necessitated the complete redesign of the protocol to SSL version 3.0. Released in 1996,
it was produced by Paul Kocher working with Netscape engineers Phil Karlton and Alan Freier, with
a reference implementation by Christopher Allen and Tim Dierks of Consensus Development. Newer
versions of SSL/TLS are based on SSL 3.0. The 1996 draft of SSL 3.0 was published by IETF as a
historical document in RFC 6101[EKKI11]].

TLS 1.0 was first defined in RFC 2246 [DA99] in January 1999 as an upgrade of SSL Version 3.0,
and written by Christopher Allen and Tim Dierks of Consensus Development.

TLS 1.1 was defined in RFC 4346 in April 2006. TLS 1.2 was defined in RFC 5246 [DROS] in
August 2008. TLS 1.3 was defined in RFC 8446 [Res18] in August 2018.

Protocol # | Published # Status L4
SSL 1.0 | Unpublished Unpublished
SSL 2.0 1995 Deprecated in 2011 (RFC 6176 2)
SSL 3.0 1996 Deprecated in 2015 (RFC 7568 2)
TLS 1.0 1999 Deprecated in 2021 (RFC 8996 2)[201(21][22]
TLS 1.1 2006 Deprecated in 2021 (RFC 8996 2)1201[211[22]
TLS 1.2 2008 In use since 2008[231[24]
TLS 1.3 2018 In use since 2018[241[23]

Figure 3: SSL and TLS protocols on wikipedia.

3.2 SSL2.0

SSL 2.0 used the same cryptographic keys for message authentication and encryption. It had a weak
MAC construction that used the MDS5 hash function with a secret prefix, making it vulnerable to
length extension attacks. And it provided no protection for either the opening handshake or an explicit
message close, both of which meant man-in-the-middle attacks could go undetected. Moreover, SSL



2.0 assumed a single service and a fixed domain certificate, conflicting with the widely used feature
of virtual hosting in Web servers, so most websites were effectively impaired from using SSL.

Compared to SSLv1, SSLv2 has the following improvements:

* Improved handshake protocol: SSLv2 uses a more flexible handshake protocol, including
negotiation between the client and server to agree on a set of common encryption algorithms
and authentication methods.

» Expanded cryptographic algorithms: SSLv2 supports multiple encryption algorithms, such
as RC2, RC4, and DES.

* Improved error handling: SSLv2 adds error checking and handling mechanisms to the
handshake protocol, making communication more reliable.

¢ Compression mechanism added: SSLv2 adds data compression mechanisms to reduce data
transmission overhead.

For the improved handshake protocol, the detailed process in Figure d]is shown below:

PHASE 1: First, the client sends a Client Hello message to the server, which mainly includes the
cipher suites, a client random number 7¢. Note that this is transmitted in plaintext.

PHASE 2: Upon receiving the message, the server responds with the cipher suites, its digital
certificate S¢ A73(S.e, s.com, ...), and a server-generated random number rg. Note that this is
transmitted in plaintext.

PHASE 3: The client then begins to verify the digital certificate and may continue to trace it up to a
trusted CA (Certificate Authority), CA’s CA, CA’s CA’s CA, etc. After verifying the certificate, the
client generates a new pre-master key &, and uses the public key S.e in the certificate to encrypt
it. Then, the encrypted pre-master key Fg c(x,,) is sent to the server. Note that this transmission is
asymmetrically encrypted. And client use the pre-master key kps, two random numbers r¢ and rg,
a symmetric encryption key £ is generated using the chosen algorithm: Key Derivation function
K DF (k). This key is then used for normal data communication. k¢ can protect traffic from the
client to server. At this point, the client’s handshake process is complete, as it has achieved the final
goal of the handshake: verifying the server’s legitimacy and obtaining the symmetric encryption key.
So the sign of client finish Ey, (rg) is also sent to server.

PHASE 4: When the server receives the encrypted pre-master key, it decrypts it using its private
key and then uses it together with the previously mentioned random number r¢ and rg to generate
the symmetric encryption key g using the same algorithm: Key Derivation function K DF(ky;).
ks can protect traffic from the server to client. At this point, the server’s handshake process is also
complete. The sign of server finish Ej (r¢) is sent to client.
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Figure 4: Handshake on page 26, lecture slides 5.

In the SSL/TLS handshake process, a Key Derivation Function (KDF) is used to generate the
symmetric encryption keys from the shared secret kj; obtained during the handshake.



Question 3.1. Why we need a Key Derivation function here?

Answer. The reason for using a KDF is to ensure that the resulting keys are strong and unpredictable,
even if an attacker knows some of the input values (such as the random numbers and the shared
secret). The KDF uses a one-way function, meaning that it is computationally infeasible to derive the
input values from the output keys.

Furthermore, the KDF is designed to ensure that the same inputs always generate the same output
keys, which is important for the symmetric encryption and integrity protection of subsequent data
communication between the client and server. O

Question 3.2. DH over Z; when K € Z37?

Answer. To encrypt a message Z; by K - Mmodp.

To encrypt a message using AES, the key should be bits? K, = Hash(K) etc.
It is not secure to utilize K from Z as a bit string. NOT EVERY bits is random O

The versions of the client hello and server hello messages introduced above are simplified versions.
We provided a more detailed handshake process here.

Phase 1 Establish security capabilities, including session ID, cipher suite, compression method, and
initial random numbers.

Phase 2 Server may send certificate, key exchange, and request certificate.

Phase 3 Client sends certificate if requested. Client sends key exchange. Client may send certificate
verification.

At this point, the entire TLS handshake process is complete, and symmetrically encrypted communi-
cation can begin.

It should be noted that SSLv2 is considered insecure in modern internet environments, with many
security vulnerabilities, and has been deprecated.

3.3 TLS1.2

The message flow of TLS 1.2 is shown in Figure[5] TLS 1.2 has made important improvements and
enhancements over TLS 1.1, its features including:
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Figure 1. Message flow for a full handshake

Figure 5: Message flow of TLS 1.2-RFC 5246 on page 31 of lecture 5.

* Support for more Hash algorithms. TLS 1.2 adds support for new Hash algorithms such
as SHA-256, SHA-384, and SHA-512. TLS 1.2 still allows the use of SHA-1 and MD5



as encryption algorithms, but these algorithms are considered insecure and therefore not
recommended for use.

* TLS 1.2 added support for Authenticated Encryption (AE). TLS 1.2 supports two AEAD
(Authenticated Encryption with Associated Data) modes, Galois/Counter Mode (GCM) and
Counter with CBC-MAC (CCM), to ensure data confidentiality and integrity. These modes
can simultaneously achieve encryption and identity verification, providing higher security.

* TLS 1.2 removed support for the IDEA and DES cipher suites. This is because the security
of these algorithms has been compromised or is considered insufficiently secure for use
in TLS. Instead, TLS 1.2 added support for more secure encryption algorithms, such as
HMAC-SHA256 cipher suites.

» TLS 1.2 still supports encryption algorithms such as RSA, CBC, RC4, and SHA1. However,
RSA requires a public key, whereas Diffie-Hellman Key Exchange is considered better and
provides forward security. CBC is vulnerable to attacks such as BEAST and LUCKY 13.
Similarly, the RC4 and SHA1 algorithms are also considered insecure. These algorithms
have been completely removed in TLS 1.3.

34 TLS1.3

TLS 1.3 was defined in RFC 8446 in August 2018. It is based on the earlier TLS 1.2 specification.
The message flow is shown in Figure [f]
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Figure 6: Message flow of TLS 1.3-RFC 8446 on page 38 of lecture 5.

The features of TLS 1.3 include: support Authenticated Encryption with Associated Data (AEAD);
static RSA and Diffie-Hellman (Enc) cipher suites have been removed; all handshake messages is
encrypted/after key is established; key derivation function is HMAC.

One feature of TLS 1.3 is using one side-use Diffie-Hellman instead of PKE. One example is shown
in Figure[7]

Assuming Alice and Bank want to negotiate a symmetric key for communication in an insecure
network environment, where g and p are prime numbers. The DH algorithm is as follows:

Phase 1: Firstly, Alice saves her private key a (random number), and Bank also saves his private key
b (random number).

Phase 2: Alice calculatesA = g® mod p and sends g,p, and A to Bank.
Phase 3: Bank calculates B = ¢® mod p and sends B to Alice.
Phase 4: Alice obtains the symmetric key X = B® mod p = (¢° mod p)® mod p = ¢g®b mod p.

Phase 5: Similarly, Bank obtains the symmetric key K = A’ mod p = (¢ mod p)® mod p =
g®b mod p.
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Figure 7: Protocol of TLS 1.3 on page 34 of lecture 5.

Another feature of TLS 1.3 is the supporting of “zero round-trip time” (0-RTT). If there is a pre-shared
keys (PSK), then may be used to establish a new connection ("session resumption" or "resuming"
with a PSK).

4 HTTPS

41 HTTPS

HTTPS represents the integration of HTTP and SSL protocols to facilitate secure communication
between a client and a server over the internet. This combination ensures data privacy, integrity, and
authentication for users when interacting with websites and online services.

The primary distinction observed by users when interacting with a website using HTTPS is that the
URL addresses begin with "https://" instead of "http://". This "s" in "https://" stands for "secure" and
indicates that the connection is encrypted, safeguarding the transmitted data from eavesdropping or
tampering by malicious actors.

For standard HTTP connections, port 80 is utilized for communication between the client and the
server. This type of connection does not provide encryption or authentication, leaving the data
transmitted potentially exposed to security risks.

On the other hand, when HTTPS is employed, port 443 is used for communication. This port
activation triggers the TLS/SSL handshake process, which establishes a secure connection between
the client and the server. The handshake process involves the exchange of cryptographic keys and
the verification of the server’s digital certificate, issued by a trusted CA. This ensures that the data
transmitted over the connection is encrypted and that the server’s identity is authenticated, preventing
possible man-in-the-middle (MITM) attacks.

The communication with HTTPS is shown in Fig|8] First, the client initiates the process by typing in
the bank’s domain name. Then the domain name will be sent to a DNS query to resolve the bank’s
domain name to an IP address. The Domain Name System translates the human-readable domain
name into a numerical IP address that identifies the bank’s server on the internet.

After obtaining the IP address, the client initiates a TCP connection with the bank’s server. This starts
with a two-way handshake:

* The client sends a TCP SYN (synchronize) packet to the server, requesting a connection.

* The server responds with an SYN-ACK (synchronize-acknowledge) packet, indicating it is
open to establishing a connection.

Once the TCP connection is established, the client initiates a TLS session to secure the commu-
nication. The client sends a "ClientHello" message to the server, which includes supported TLS
versions, cipher suites, and a random number (ClientRandom). Then The server responds with a
"ServerHello" message, which includes the chosen TLS version, cipher suite, and another random
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Figure 8: Communication with HTTPS

number (ServerRandom). The server then sends its digital certificate to the client, which contains the
server’s public key and is signed by a trusted Certificate Authority. The server may also request the
client’s certificate for mutual authentication.

The client verifies the server’s certificate by checking its validity period, the CA’s signature, and
ensuring the domain name matches the bank’s domain. If the certificate is valid and trusted, the client
proceeds with the TLS handshake.

The client generates a pre-master secret using the server’s public key (pk) from the cert bank and
sends it to the server. Both the client and server use the pre-master secret, ClientRandom, and
ServerRandom to derive the same master secret, which is then used to create symmetric encryption
keys for secure communication.

The client and server exchange "Finished" messages, which are encrypted using the newly established
symmetric keys. This step confirms that the handshake was successful and the secure connection is
established.

With the secure TLS connection in place, the client and server can now exchange sensitive data,
such as login credentials and financial transactions, with the assurance that the communication is
encrypted and protected from eavesdropping or tampering. The client can view the display of the
Page, URL, and Padlock from the back.

4.2 Certificate Misissuance

The security and integrity of HTTPS communications are fundamentally reliant on the premise that
Certificate Authorities (CAs) issue valid and trustworthy digital certificates. These certificates serve
as a confirmation of the identity of the entities engaged in online transactions and communications,
acting as the backbone of the HTTPS ecosystem. However, the system may be jeopardized when a
CA is compromised or mistakenly issues certificates, leading to potentially severe security breaches
and undermining users’ confidence in the internet’s security infrastructure.

Notable incidents involving the compromise or mismanagement of CAs include:

* In 2011, Certificate Authorities Comodo and DigiNotar were breached by attackers, resulting
in the unauthorized issuance of fraudulent certificates for prominent web services such as
Gmail and Yahoo! Mail. These incidents exposed the vulnerabilities in the CA infrastructure,
raising concerns about the potential for malevolent actors to intercept or manipulate sensitive
user data, and ultimately leading to the revocation and dissolution of DigiNotar.
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* In 2013, TurkTrust inadvertently issued a certificate for the gmail.com domain, which
could have enabled attackers to impersonate Google’s email service and intercept or tamper
with users’ communications. The certificate was subsequently revoked, and the incident
highlighted the need for enhanced oversight and controls in the certificate issuance process.

* In 2016, Chinese CA WoSign issued a certificate for the GitHub domain, among other
infractions, which could have put the users of the popular code-sharing platform at risk of
man-in-the-middle attacks. As a result of these transgressions, WoSign’s certificates were no
longer trusted by major internet browsers such as Chrome, Firefox, and Apple, highlighting
the severe consequences that can arise from the mismanagement of digital certificates.

The Fig. 0] shows the consequences of compromised certificate authorities. The attacker knows data
between the user and the bank and sees all traffic and can modify data at will.

In conclusion, the security of HTTPS communications is contingent upon the proper functioning and
management of Certificate Authorities. When CAs are compromised or erroneously issue certificates,
the entire HTTPS ecosystem can be jeopardized, leading to potential security breaches and a loss
of trust in the underlying infrastructure. To maintain the credibility and effectiveness of the HTTPS
protocol, it is imperative to establish robust security measures and oversight mechanisms to prevent
future incidents of certificate misissuance and CA compromise.
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