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In this lecture, we first recall symmetric key cryptography and mention its drawbacks.
Next, we introduce a breakthrough work for public key cryptography called Diffie-Hellman
Key Exchange. The syntax of public key encryption is presented accordingly, as well as two
concrete examples, ElGamal and RSA. At last, we introduce digital signatures as another
important application.

1 Recap of symmetric key cryptography
We first introduce a fundamental principle for the design of cryptographic primitives as a
supplement to the previous lesson.

Definition 1 (Kerckhoffs’ Principle). Even if attackers have complete knowledge of all the
encryption algorithms, the system is secure.

1.1 Security definitions

As mentioned in lecture 2, the concept of computational security is defined as follows,

Definition 2. A scheme π is said to be computationally secure if any PPT adversary succeeds
in breaking the scheme with negligible probability.

Specifically, the action of “breaking” is measured by the aim and capability of the adver-
sary described as

• Aim. The aim of the adversary is to try to learn something meaningful from the target
ciphertext C∗.

• Capability. For CPA adversary AEnc, it can choose the plaintext and receive the
corresponding ciphertext. For CCA adversary AEnc,Dec(), it can choose the plaintext
or ciphertext and receive the corresponding ciphertext or plaintext.

1.2 Security proof: reduction

If we want to prove that breaking algorithm π is hard, we can use the reduction strategy.
There are some hard problems and we assume that problem x is one of them. Then, we just
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Figure 1: Big picture of Cryptography on page 12, lecture slides 3.

need to prove that if there is an efficient algorithm attacking π, we can use it to solve the
problem x, which means that breaking π is harder than x. As a result, if breaking x is hard,
we can conclude that algorithm π is secure.

Currently, several hard problems are commonly recognized by the community, which
allow us to build lots of useful cryptographic tools with rigorously proven security. The big
picture of Cryptography is shown in Figure 1.

1.3 Symmetric-key cryptography

We briefly review the syntax of symmetric-key cryptography. An encryption scheme Π
consists of three public algorithms (KeyGen,Enc,Dec), standing for the key generation, en-
cryption, and decryption algorithms.

Although symmetric-key cryptography could help us to share messages securely, it also
faces some problems. Especially when a user wants to communicate with other N − 1 users,
he has to negotiate and store N symmetric keys. As a result, a system with N users will
generate O(N2) keys in total, which makes it difficult for key management. Some researchers
tried to solve this problem more elegantly. Hence the Diffie-Hellman key exchange scheme
was proposed.

2 Diffie-Hellman key exchange
Diffie-Hellman key exchange is proposed in 1976 [Hel76], which aims to exchange keys in
a secure and efficient way. Generally speaking, Diffie-Hellman key exchange is a two-party
protocol for the negotiation of session keys in an insecure channel. Before diving into the
details of how it works, we need to introduce some mathematical concepts first.
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2.1 Preliminaries

Definition 3. A group (G, ◦) is a set G together with a binary operation ◦ satisfying three
axioms:

• associativity. (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G.

• identity. ∃ e ∈ G such that e ◦ a = a ◦ e = a for all a ∈ G.

• inverse. ∀ a ∈ G there exists a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = e.

The cyclic group is defined as:

Definition 4. A group (G, ◦) is cyclic if there exists g ∈ G such that G = {gi | i ∈ z} =
{..., g−2, g−1, g0, g1, g2, g3, ...}, where g is a generator for G and (G, ◦) = ⟨g⟩.

For any cyclic group, the following Euler’s theorem holds, where e is the identity of the
group. Note that this theorem can be proved by contradiction.

Theorem 1. If (G, ◦) is a finite group, for all g ∈ G, we have g|G| = e.

Corollary 1. gi = gi mod n = gi mod |G|

Remark 1. Suppose p = 2q + 1 and q is a prime number. (Z∗
p, ·) has a sub-group ⟨g⟩ of

order q.

2.2 Concrete protocols

With the preliminary above, now we can introduce the detailed process of the Diffie-Hellman
key exchange. We assume that the two communicating parts are Alice and Bob. Then Alice
and Bob execute the following protocol:

Diffie-Hellman key exchange protocol ΠDH .

1. Alice and Bob agree on the public parameter (G, p, g), where G is a cyclic
group of order p with generator g. // NOTE: (G, p, g) could be the parameter
recommended by NIST or RFC document.

2. Alice chooses a random a ∈ Zq uniformly and computes A = ga.

3. Alice sends (G, q, g, A) to Bob.

4. Bob receives (G, q, g, A) and chooses b ∈ Zq. Then, Bob computes and sends
B = gb to Alice. The shared key is computed as K = Ab.

5. After receiving B, Alice computes the shared key as K = Ba.

Theorem 2. Diffie-Hellman key exchange ΠDH is secure in the presence of an eavesdropper.
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Proof. Suppose that there is a PPT adversary A that can break the Diffie-Hellman key
exchange with non-negligible advantage ϵ, we construct a PPT simulator B that can break
the DDH problem.

Concretely, given as input a problem instance (G, q, g, A,B,C or K) where (A = ga, B =
gb, K = gab) as instance of DDH problem and C is a random key, B runs A and works as
follows

• B sends G, q, g as public parameters of Diffie-Hellman key exchange problem to A.

• B constructs a Diffie-Hellman key exchange instance as (A,B,C or K) and sends it to
A.

• With a non-negligible probability, A outputs a value b indicating whether the Diffie-
Hellman key exchange instance is valid, then B can distinguish the DDH instance.

In order to guarantee the DDH assumption holds, we need to choose a group ⟨g⟩ with
large space.

3 Syntax of public key encryption
Diffie-Hellman key exchange provides a secure approach for sharing a secret between two
parties. As a result, the shared secret can be used as the key for symmetric-key encryption.
In this section, we introduce the public-key encryption. Different from the former scheme, it
directly encrypts the plaintext based on the hard problems.

A public encryption scheme is defined as Σ = (KeyGen,Enc,Dec) in the following.

KeyGen(1n) On input 1n, generate sk← SK and pk← PK, outputs (sk, pk) as a public and
secret key pair.

Enc(pk,M) . On input public key pk and message M , generate and output C = Encpk(M)
as the ciphertext.

Dec(sk, C) . On input secret key sk and ciphertext C, return M = Decsk(C) as the message
or ⊥ as failure.

The correctness property requires Dec(sk,Enc(pk,M)) = M holds for all (sk, pk) ←
KeyGen, and its security proof is trivial.

Next we introduce the IND-CPA and IND-CCA security of Σ.

3.1 IND-CPA Security

For an adversary A, and security parameter λ, we define the indistinguishably chosen plain-
text security of Σ via experiment ExpIND-CPA

Σ (A).
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ExpIND-CPA
Σ (A)

1. The challenger chooses b← {0, 1} to indicate which message is encrypted.

2. The challenger generates (sk, pk)←r Σ.KeyGen.

3. Adversary A is given pk, and allowed to find a pair of messages (M∗
0 ,M

∗
1 )←

A(pk) it wants.

4. Return ⊥ if |M∗
0 | ≠ |M∗

1 |.

5. The challenger runs C∗ = Σ.Enc(pk,M∗
b ) and returns back C∗.

6. A(pk, C∗) returns b′ as the guess of b.

7. Return 1 if b = b′, else 0.

Definition 5 (IND-CPA Security). The IND-CPA-advantage of an adversary against IND-CPA
security of Σ is defined as

Advind−cpa
Σ (A) := |Pr[Expind−cpa

Σ (A)⇒ 1]− 1/2|.

Σ is said to be IND-CPA secure if for any PPT adversary, IND-CPA-advantage is a negligible
function of λ.

3.2 IND-CCA Security

For an adversary A, and security parameter λ, we define the indistinguishably chosen ci-
phertext security of Σ via experiment ExpIND-CCA

Σ (A).

Definition 6 (IND-CCA Security). The IND-CCA-advantage of an adversary against IND-CCA
security of Σ is defined as

Advind−cca
Σ (A) := |Pr[Expind−cca

Σ (A)⇒ 1]− 1/2|.

Σ is said to be IND-CCA secure if for any PPT adversary, IND-CCA-advantage is negligible
function of λ.
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ExpIND-CCA
Σ (A)

1. The challenger chooses b← {0, 1} to indicate which message is encrypted.

2. The challenger generates (sk, pk)←r Σ.KeyGen.

3. Adversary A is given pk and allowed to access to an oracle Decsk(·). It finds a
pair of messages (M∗

0 ,M
∗
1 )← ADecsk(·)(pk) it wants.

4. Return ⊥ if |M∗
0 | ≠ |M∗

1 |.

5. The challenger runs C∗ = Σ.Enc(pk,M∗
b ) and returns back C∗.

6. ADecsk(·)(pk, C∗) returns b′ as the guess of b.

7. Return 1 if b = b′, else 0.

query Decsk(·) with C

1. Return Dec(sk, C) if C ̸= C∗, otherwise abort.

4 ElGamal Encryption
An ElGamal encryption scheme [ElG85] is defined as ΣElGamal = (KeyGen,Enc,Dec) in the
following.

KeyGen(1λ)→ (pk, sk). The key generation algorithm takes as input a security parameter λ,
then selects a cyclic group G according to λ and a corresponding generator g. Next, it
selects x←r {1, · · · , |G| − 1} and returns the public key pk and secret key sk as

pk = gx, sk = x.

Enc(pk,M)→ C. The encryption algorithm takes as input a public key pk and a message
M ∈ G. It selects r ←r {1, · · · |G| − 1} and returns the ciphertext C as

C = (C1, C2) = (pkr ·M, gr) .

Dec(sk, C)→M . The decryption algorithm takes as input a secret key sk and a ciphertext
C = (C1, C2). It returns the message M as

M = C1/C
sk
2 .

Theorem 3. ElGamal Scheme ΣElGamal is correct.

Proof.

C1

Csk
2

=
pkrM

(gr)x
=

(gx)rM

(gr)x
=

gxrM

gxr
= M.
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Theorem 4. ElGamal Scheme ΣElGamal is IND-CPA under DDH assumption.

Proof. Suppose that there is a PPT adversary A that can break ΣElGamal in the IND-CPA
security model with non-negligible advantage ε, we construct a PPT simulator B that can
solve the DDH problem with non-negligible advantage. Given as input a problem instance
(g, ga, gb, T ), B runs A and works as follows:

• Setup. B sets pk = ga and sends it to A.

• Challenge. A outputs two different messages M0,M1 ∈ G. B chooses c ←r {0, 1}
and sets the challenge ciphertext C∗ as

C∗ =
(
T ·Mc, g

b
)
.

Finally, B sends C∗ to A.

• Guess. A outputs a guess c′ of c. If c′ = c, B outputs 1 to indicate that T = gab.
Otherwise, B outputs 0 to indicate that T = R.

If T = gab, C∗ is a well-formed ciphertext according to ΣElGamal. If T = R, C∗ contains
no information about Mc. Thus, the advantage of B solving the DDH problem is as follows:

AdvB = Pr[T = gab]Pr[c′ = c|T = gab] + Pr[T = R]Pr[c′ ̸= c|T = R]− 1

2

=

(
ε+

1

2

)
· 1
2
+

1

2
· 1
2
− 1

2

=
ε

2
,

which is non-negligible.

5 RSA Encryptions
RSA encryption scheme is another popular scheme proposed by Rivest–Shamir–Adleman in
1977 [BB79]. Different from the previous ElGamal, the RSA scheme is based on another
hard problem named RSA problems. We first give an introduction to the basic mathematical
theorems it is based on.

5.1 Preliminaries

Lemma 1. Let a, b be positive integers. gcd(a, b) can be expressed by x∗a+ y∗b where x∗, y∗

are integers. Furthermore, gcd(a, b) is the smallest positive integer that has this formulation.

Proof. Define a set I
def
= {xa + yb : x, y ∈ Z}. Define the smallest positive integer in I as

s
def
=min {c : c ∈ I, c > 0}. Write s = x∗a + y∗b for some x∗, y∗ ∈ Z. Now we only need to

prove that s = gcd(a, b).
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Firstly, we need to prove that s|a and s|b. Actually, we can prove this by showing that
s|i for every i ∈ I (obviously a ∈ I, b ∈ I). Suppose that i = xa + yb for some x, y ∈ Z. It
can be expressed as i = qs+ r where q, r ∈ Z and 0 ≤ r < s. Then we have

r = i− qs = xa+ yb− q(x∗a+ y∗b) = (x− q · x∗)a+ (y − q · y∗)b ∈ I.

If r ̸= 0, then 0 < r < s, which contradicts that s is the smallest number in I. Thus, r = 0,
which proves our claim.

Secondly, we have to show that s is the greatest integer that divides both a and b. Suppose
that there is an integer s′ such that s′ > s, s′|a and s′|b, then we have s′|x∗a+ y∗b, namely,
s′|s, which is a contradiction. Thus, we prove our claim.

Lemma 2. Consider the multiplication operation. Let a,N be integers such that a ≥ 1 and
N ≥ 2. a is invertible modulo N if and only if gcd(a,N) = 1.

Proof. 1. a is invertible. Suppose b is an inverse of a, we have ab = 1 mod N . Then we have
ab− 1 = xN for some x ∈ Z and equivalently ba−xN = 1. According to Lemma 1, we have
gcd(a,N) = 1 (b,−x ∈ Z, and 1 is the smallest positive integer).

2. gcd(a,N) = 1. We have xa + yN = 1 for some x, y ∈ Z. Then we have xa + yN =
1 mod N , namely, xa = 1 mod N . Thus, x is an inverse of a.

Theorem 5. Let N be an integer such that N ≥ 2, we have Z∗
N is an abelian group under

multiplication modulo N , where Z∗
N

def
= {a ∈ {1, · · · , N − 1} : gcd(a,N) = 1}.

Proof. We prove that Z∗
N satisfies the following axioms.

1. Closure. From Lemma 2, for a ∈ {1, · · · , N − 1}, we have that a ∈ Z∗
N , a is invertible,

and gcd(a,N) = 1 are equivalent. For any a, b ∈ Z∗
N , let c, d ∈ Z be inverses of a, b

respectively, namely, ac = 1 mod N and bd = 1 mod N . We have (ab)(dc) = a(bd)c =
a1c = ac = 1 mod N , namely, ab is also invertible (bd is an inverse of it). Thus,
ab ∈ Z∗

N .

2. Identity. 1 ∈ Z∗
N .

3. Inverse. Except for using the result of Lemma 2, we also have to find an inverse in
Z∗

N (not only in Z) for any element in Z∗
N . For any a ∈ Z∗

N , suppose that b ∈ Z is an
inverse of a. b can be expressed as b = qN + r where q, r ∈ Z and 0 < r < N (note
that r ̸= 0, otherwise ab = 0 mod N). We have ar = a(b− qN) = ab− aqN = 1− 0 =
1 mod N . From this result: firstly, r is also an inverse of a; secondly, r is invertible
and r ∈ {1, · · · , N − 1}, namely, r ∈ Z∗

N .

4. Associativity. This follows from multiplication over integers.

5. Commutativity. This follows from multiplication over integers.

Next, we define Euler’s Theorem as well as its corollaries.
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Theorem 6. Define ϕ(N)
def
= |Z∗

N |, namely, ϕ(N) is the order of the group Z∗
N . For N = pq,

where p, q are distinct primes, we have ϕ(N) = (p− 1)(q − 1).
Proof. N = pq have the following positive divisors: 1, p, q, pq. If an integer a ∈ {1, · · · , N−1}
is not relatively prime to N , namely, gcd(a,N) ̸= 1, we have gcd(a,N) = p or gcd(a,N) = q,
equivalently, p|a or q|a (vice versa). Then a can be p, 2p, · · · , (q−1)p for the first case (q−1
elements), or q, 2q, · · · , (p− 1)q for the second case (p− 1 elements). Thus, we have:

ϕ(N) = (N − 1)− (q − 1)− (p− 1) = pq − p− q + 1 = (p− 1)(q − 1).

Corollary 2. Let N be an integer such that N ≥ 2, and a ∈ Z∗
N , we have

aϕ(N) = 1 mod N.

This can be deduced directly from Theorem 1.
Corollary 3. Let N be an integer such that N ≥ 2, for any a ∈ Z∗

N and x ∈ Z, we have

ax = a[x mod ϕ(N)].

This can be deduced directly from Corollary 1.

5.2 Textbook RSA Encryption

A textbook RSA encryption scheme is defined as ΣRSA = (KeyGen,Enc,Dec) in the following.

KeyGen(1λ)→ (pk, sk). The key generation algorithm takes as input a security parameter λ,
then selects two random prime numbers p and q according to λ. Next, it computes N =
pq and ϕ(N) = (p−1)(q−1). Then, it chooses e from Z∗

ϕ(N), namely, gcd(e, ϕ(N)) = 1,
and computes d = e−1 mod ϕ(N). Finally, it returns the public key pk and secret key
sk as

pk = (N, e), sk = d.

Enc(pk,M)→ C. The encryption algorithm takes as input a public key pk = (N, e) and a
message M ∈ Z∗

N . It returns the ciphertext C as

C = M e mod N.

Dec(sk, C)→M . The decryption algorithm takes as input a secret key sk = d and a cipher-
text C. It returns the message M as

M = Cd mod N.

Theorem 7. RSA Scheme ΣRSA satisfies the correctness property.
Proof.

Cd = M ed = M [ed mod ϕ(N)] = M1 = M mod N.

The textbook RSA encryption scheme can not be IND-CPA secure since its encryption al-
gorithm is deterministic [KL20]. To achieve IND-CPA or even IND-CCA security, we should
pad message with random data in the encryption algorithm. Actually, RSA encryptions are
not used commonly in practice.
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6 Digital Signature

6.1 Syntax of digital signature

Message authentication code was given in the previous lecture mainly for achieving integrity.
Here we introduce a new cryptographic primitive as a digital signature based on public key
encryption. Compared with MAC schemes, digital signature has several advantages.

• Public verifiability: Digital signatures can be verified by anyone, while MACs can only
be verified by a party sharing the same key.

• Non-repudiation: Alice cannot deny having created σ, but she can deny having created
a MAC tag T (since Bob could have done it)

A digital signature scheme is defined as Σsig = (KeyGen, Sign,Vrfy) with verification key
space VK, and secret key space SK.

KeyGen(1n) On input 1n, generate sk← SK and vk← VK, outputs (sk, vk) as a verification
and secret key pair.

Sign(sk,M) . On input secret key sk and message M , generate and output σ = Signsk(M)
as the ciphertext.

Vrfy(vk,M, σ) . On input verification key vk, message M and signature σ, return 1 =
Vrfyvk(M,σ) for valid signature or 0 for invalid one.

The correctness property requires Vrfy(vk, Sign(sk,M)) = 1 holds for all (sk, vk) ←
KeyGen, and its security proof is trivial.

ExpUF-CMA
Σ (A)

1. The challenger generates (sk, vk)←r Σ.KeyGen.

2. Adversary A creates an empty set S ← [ ].

3. Adversary A is given vk and allowed to access to an oracle Signsk(·). It finds
a pair of messages (M∗, σ∗)← ASignsk(·)(vk) it wants.

4. The challenger runs b = Σ.Vrfy(vk,M∗, σ∗).

5. Return 1 if b = 1, else 0.

query Signsk(·) with M

1. σ ← Σ.Sign(sk,M)

2. S.add(M)

3. Return σ
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Moreover, the security of a digital signature scheme requires that an adversary can not
forge a valid signature without knowing the secret key, even if it obtains signatures of many
other chosen messages. For an adversary A and security parameter λ, we define the unforge-
able chosen message security of Σ via experiment ExpUF-CMA

Σ (A).

Definition 7 (UF-CMA Security). The UF-CMA-advantage of an adversary A against secu-
rity of Σ is defined as

Advuf−cma
Σ (A) := Pr[Expuf−cma

Σ (A)⇒ 1].

Σ is said to be UF-CMA secure if for any PPT adversary, UF-CMA-advantage is a negligible
function of λ.

6.2 Textbook RSA signatures

A textbook RSA signature scheme is defined as ΣRSA = (KeyGenRSA, SignRSA,VrfyRSA) in
the following.

KeyGenRSA(1
n) On input 1n, generate two random prime numbers p, q and compute n =

p ·q, ϕ(n) = (p−1)(q−1). Choose e such that gcd(e, ϕ(n)) = 1 and d = e−1 mod ϕ(n).
Output secret key sk = (n, d) and verification key vk = (n, e).

SignRSA(sk,M) On input secret key sk and message M , generate and output σ = Md mod n
as the ciphertext.

VrfyRSA(vk,M, σ) On input verification key vk, message M and signature σ, return 1 if
σe = M mod n or 0 for invalid one.

Theorem 8. Textbook RSA signature Scheme ΣRSA is correct.

Proof.

σe = M ed mod ϕ(n) = M1 = M mod n

However, the textbook RSA signature is vulnerable to forgery attacks. Assume that
an adversary aims to forge a valid signature with the verification key vk = (n, e). Then it
chooses two different messages and accesses the oracle Signsk(·) for their signatures σ1, σ2. As
a result, the adversary can forge a valid signature σ = σ1 ·σ2 mod n of message M = M1 ·M2

and it can be verified as follows,

σe = (σ1 · σ2)
e mod n = (M1M2)

ed mod n = M1 ·M2 = M.
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6.3 Secure digital signatures

6.3.1 Hash-then sign paradigm

For security and efficiency, we introduce the Hash-then sign paradigm. Instead of signing
message m itself, a hash function is used to map it into a fixed-length value first. A hash-
and-sign RSA signature scheme is defined as Σ = (KeyGen, Sign,Vrfy) with hash function
H(·) in the following.

KeyGenRSA(1
n) On input 1n, generate two random prime numbers p, q and compute n =

p ·q, ϕ(n) = (p−1)(q−1). Choose e such that gcd(e, ϕ(n)) = 1 and d = e−1 mod ϕ(n).
Output secret key sk = (n, d) and verification key vk = (n, e).

SignRSA(sk,M) On input secret key sk and message M , generate and output σ = H(M)d

mod n as the ciphertext.

VrfyRSA(vk,M, σ) On input verification key vk, message M and signature σ, return 1 if
σe = H(M) mod n or 0 for invalid one.

Theorem 9. For any UF-CMA adversary A against hashed RSA making q Signsk(·) queries,
there is an algorithm B solving the RSA problem:

Advuf−cma
RSA,H (A) ≤ q · AdvRSA

n,e (B),

where H is assumed perfect.

Remark 2. H is assumed to be a random oracle, which is out of the scope of this course.
Refer to [KL20] Section 5.

6.3.2 Discrete-log-based signatures

Based on the hash-then-sign paradigm above, we further introduce several secure digital
signature schemes in real-world applications.

The schnorr signature is an elegantly designed scheme with a formal security proof.
However, it was patented until February 2008.

The (EC)DSA signature is a non-patented alternative scheme derived from the ElGamal-
based signature scheme. Compared with the schnorr signature, it has a more complicated
design and no security proof. This signature is also standardized by NIST and has a wide
range of applications.

References
[BB79] G Robert Blakley and Itshak Borosh. Rivest-shamir-adleman public key cryptosys-

tems do not always conceal messages. Computers & mathematics with applications,
5(3):169–178, 1979.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.



COMP 6712 Advanced Security and Privacy 2022/23

[Hel76] Martin Hellman. New directions in cryptography. IEEE transactions on Information
Theory, 22(6):644–654, 1976.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC
press, 2020.


	Recap of symmetric key cryptography
	Security definitions
	Security proof: reduction
	Symmetric-key cryptography

	Diffie-Hellman key exchange
	Preliminaries
	Concrete protocols

	Syntax of public key encryption
	IND-CPA Security
	IND-CCA Security

	ElGamal Encryption
	RSA Encryptions
	Preliminaries
	Textbook RSA Encryption

	Digital Signature
	Syntax of digital signature
	Textbook RSA signatures
	Secure digital signatures
	Hash-then sign paradigm
	Discrete-log-based signatures



