
COMP 6712 Advanced Security and Privacy 2022/23

Lecture note 2: Symmetric key cryptography

Haiyang Xue

March 15, 2023

In this lecture, we discuss the syntax of symmetric key encryption, its security and con-
structions. As important building blocks, pseudorandom generator (PRG), pseudurandom
function (PRF), and message authenticated code (MAC) are also included. At last, we
introduce the concept of hash functions.

1 Syntax of symmetric key encryption
A symmetric key encryption scheme Π consists of three public algorithms (KeyGen,Enc,Dec),
as well as message spaceM, key space K, and ciphertext speace C.

KeyGen (1λ) On input 1λ, generate K ← K with randomness, and output a pair key (K,K)
as secret keys. Distribute the key to the two parties.

Enc(K,M) This is a probabilistic or deterministic algorithm. On input secret key K and
message M ∈M, generate and output C ∈ C as the ciphertext.

Dec(K,C) This is a deterministic algorithm. On input secret key K and the ciphertext
C ∈ C, return the corresponding message M ∈M or ⊥.

Decryption correctness requires that for all (K,K)← KeyGen(1λ),M = Dec(K,Enc(K,M))
holds form ∈M. This is known as the perfect correctness. Sometimes, “a small" probability
of decryption error is allowed.

Remark 1. All the algorithms in the encryption schemes are public. The only thing that is
secret is the encryption/decryption key K this is known as the Kerckhoffs’ principle.

Remark 2. We leave the problem of distributing/sharing secret key K in the next lecture.

2 Perfect security and one-time pad
Generally, if an encryption is secure against any unbounded adversary, it satisfies perfect
security. Informally, the ciphertext gives nothing about the message. Shannon formally
defined perfect security as follows.



COMP 6712 Advanced Security and Privacy 2022/23

Definition 1. We say that an encryption scheme Π = (KeyGen,Enc,Dec) associated with
message space M is perfectly secret, if for every distribution over M, every m ∈ M, and
every ciphertext c ∈ C,

Pr[M = m | C = c] = Pr[M = m], (1)

with probability taken over the random choice in KeyGen, and the random coins used by Enc.

A question is whether perfect security is achievable. One-time padding scheme Πotp =
(KeyGen,Enc,Dec), introduced in the following, achieves the perfect security. Fix an integer
l and setM = K = C = {0, 1}l.

KeyGen (1λ) On input 1λ, generate K ← {0, 1}l and output a pair key (K,K) as secret keys.

Enc(K,M) On input secret key K and message M , generate and output C = K ⊕M as the
ciphertext.

Dec(K,C) On input secret key K and the ciphertext C, return M = K⊕C as the message.

Theorem 1. One-time pad scheme Πotp is perfectly secret.

Proof. We only need to prove that the one-time padding satisfies equation 1.
At first we have,

Pr[C = c | M = m] = Pr[m = c⊕K]

= Pr[K = m⊕ c]
= Pr[K = c⊕m]

=
1

2l
.

(2)

Then, we also have

Pr[C = c] =
∑

m∈{0,1}l
Pr[C = c|M = m] Pr[M = m]

=
∑

m∈{0,1}l

1

2l
Pr[M = m] according to equation 2

=
1

2l
.

(3)

Finally, according to Bayes theorem,

Pr[M = m | C = c] =
Pr[C = c|M = m] Pr[M = m]

Pr[C = c]
=

=
1
2l

Pr[M = m]
1
2l

= Pr[M = m].

(4)
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However, from one-time padding, we can see the key length equal to the message length,
which means in order to encryption l-bit message, l-bit key should be shared before. Actually
this is the limitation of all perfectly secret encryption.

Theorem 2. If Π = (KeyGen,Enc,Dec) is a perfectly secret encryption scheme associated
with message spaceM and key space K, we have

|K| ≥ |M|.

Proof. We assume |K| < |M|, and show that Π can not be perfectly secret. For a ciphertext
c∗ ∈ C, define

M(c∗) := {m ∈M | m = Dec(K, c∗), for K ∈ K}.

Since Dec is deterministic, |M(c∗)| ≤ |K| < |M |. There must exist a m′ fromM such that
m′ 6∈ M(c∗) (WOLG, assume the distribution of message is uniform). Thus,

0 = Pr[M = m′ | C = c∗] 6= Pr[M = m′] =
1

2l
,

Π can not be perfectly secret.

From this theorem, we can see the key length ≥ the message length is the inherent
limitation of perfectly secret encryption.

3 Computational security
We could break the limitation of perfect security by considering security against computation-
al bounded adversary, rather than unbounded adversary. This makes sense since unbounded
adversary does not exist in our real-life world. What we are facing is the probabilistic
polynomial time (PPT) adversary.

Roughly, we say a scheme is computational secure, if any PPT adversary successfully
breaks the scheme with a “small" probability. But what kind of probability could be taken
as small enough.

Definition 2 (Negligible function). A positive function f : N→ R is negligible if for every
positive polynomial p(·) there exists an integer Np such that for all integer x > Np (or if for
every positive polynomial p(·) and all sufficiently large x), f(x) < 1

p(x)
. We generally denote

an arbitrary negligible function by negl.

Lemma 1. Prove the following properties

1. if negl1 and negl2 are negligible functions, negl1 + negl2 is also a negligible function.

2. Assume negl is negligible, so does p(·) · negl for any positive polynomial p(·).

Proof. For every polynomial p(·), ∃ N1, N2 s.t.

negl1(n) <
1

2p(n)
, ∀ n > N1,
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negl2(n) <
1

2p(n)
, ∀ n > N2.

Define N def
= max{N1, N2}. Then we have ∀ n > N

negl1(n) + negl2(n) <
1

2p(n)
+

1

2p(n)
=

1

p(n)
.

For every positive polynomial q(·), ∃ N s.t. ∀ n > N

negl(n) <
1

p(n)q(n)
, then, p(n) · negl(n) < p(n) · 1

p(n)q(n)
=

1

q(n)
.

Remark 3. 1
2n

is obviously a negligible function, while 1
n1000

is not.

Definition 3. An encryption scheme Π is said to be computational secure if for any PPT
adversary A, the probability that A successfully breaks scheme Π is a negligible function of
input length (or the probability is negligible).

4 IND-eavesdropper security and construction
We do not define what is “successfully breaks" in definition 3. Here, we give more details
about this by introducing “indistinguishably (IND) -eavesdropper security". Roughly, an
adversary successfully breaks the IND-eavesdropper security of a scheme if it can distinguish
which of the two messages (chosen by itself) is encrypted in the ciphertext. Formally it is
defined by the following experiment of scheme Π = (KeyGen,Enc,Dec) between the adversary
and challenger.

Expind−evaΠ (A)

1. The challenger chooses b← {0, 1} to indicate which message is encrypted

2. The challenger generates (K,K)← KeyGen(1λ)

3. Adversary A chooses and sends (M0,M1) to the challenger

4. The challenger runs C∗ = Enc(K,Mb) and returns back C∗

5. A(C∗) returns b′ as the guess of b

6. Return 1 if b = b′, else 0.

Definition 4 (IND-eav Security). The IND-eav-advantage of an adversary against IND-
eavesdropper security of Π is defined as

Advind−eavΠ (A) := |Pr[Expind−evaΠ (A)⇒ 1]− 1/2|.

Π is said to be IND-eva secure if for any PPT adversary, IND-eav-advantage is a negligible
function of λ.
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4.1 Construction from pseudorandom generator

We first introduce the primitive of pseudorandom generator, then construct IND-eva secure
encryption from pseudorandom generator.
Definition 5 (Pseudorandom generator (PRG)). Let G be a deterministic polynomial time
algorithm takes s ∈ {0, 1}n as input and outputs G(s) of length `(n). We say G is a pseudo-
random generator (PRG), if it satisfies
• `(n) > n

• for any PPT algorithm A, there exists a negligible function negl such that

Pr[A(G(s)) = 1 | s ∈ {0, 1}n]− Pr[A(r) = 1 | r ∈ {0, 1}`(n)] ≤ negl,

where the first probability is taken over the randomness of A and randomness of s, and
the second one is taken over the randomness of A and the randomness of r.

We leave the construction of PRG in the next lecture. Here we assume the existence of
PRG and based on it construct encryption scheme. Assume G with output length `(n) is a
secure PRG. A scheme Π1 = (KeyGen,Enc,Dec) with fix length, introduced in the following,
achieves the IND-eav security. Fix an integer `(n) and setM = C = {0, 1}`, and K = {0, 1}n.
KeyGen (1n) On input 1n, generate K ← {0, 1}n and output (K,K) as secret keys.

Enc(K,M) On input K and message M , generate C = G(K)⊕M as the ciphertext.

Dec(K,C) On input K and the ciphertext C, return M = G(K)⊕ C as the message.
The correctness is trivial.

Figure 1: Illustration of Π1 according to Fig 3.2 of [KL20]

Theorem 3. Under the assumption G is a secure PRG, Π1 = (KeyGen,Enc,Dec) is IND-eva
secure, i.e, for any PPT adversary A, the IND-eav advantage is negligible.

Please refer to section 3.3.3 of [KL20] for the proof.
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5 IND-CPA security and construction
IND-eavesdropper is a very weak security aim. Actually, the adversary can do more things
than just receives the ciphertext and guess which message is encrypted in the aim ciphertext.
It can choose a message and asked the challenger (or user) to generate the ciphtext which
may help it to attack the aim ciphertext. For example, in World War II, British placed naval
mines at certain locations, knowing that the Germans—when finding those mines—would
encrypt the locations and send them back to Germany. Thus, it is necessary to define a
stronger security.

We abstract adversary’s capability of choosing a message and getting the corresponding
ciphertext by allowing adversary A to ask the algorithm Enc(K, ·) with any message it
wants. We say this as allowing A to query the encryption oracle Enc(K, ·) with message m
and receive the ciphertext Enc(K,m). This is usually denoted as AEnc(K,·).

The resulting security is indistinguishably chosen plaintext security and defined via the
following experiment. Let Π = (KeyGen,Enc,Dec) be an encryption scheme.

Expind−cpaΠ (A)

1. The challenger chooses b← {0, 1}

2. The challenger generates (K,K)← KeyGen(1λ)

3. (M0,M1) ← AEnc(K,·) // here, AEnc(K,·) means A can query the encryption oracle
Enc(K, ·) with any message it wants

4. The challenger runs C∗ = Enc(K,Mb) and returns back C∗

5. AEnc(K,·)(C∗) returns b′ as the guess of b

6. Return 1 if b = b′, else 0.

query Enc(K, ·) with m

1. return Enc(K,m)

Definition 6 (IND-CPA Security). The IND-CPA-advantage of an adversary against IND-
CPA security of Π is defined as

Advind−cpaΠ (A) := |Pr[Expind−cpaΠ (A)⇒ 1]− 1/2|.

Π is said to be IND-CPA secure if for any PPT adversary, IND-CPA-advantage is a negligible
function of λ.

5.1 Pseudorandom Function(PRF))

We first introduce the primitive of pseudorandom function, then construct IND-CPAsecure
encryption from pseudorandom function.
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Let F : {0, 1}n × {0, 1}in → {0, 1}out be an efficient function (where in and out is a
polynomial of n). For each K ∈ {0, 1}n, we get a function FK : {0, 1}in → {0, 1}out defined
by FK(X) = F (K,X). Let Funcn be the set of all the functions mapping {0, 1}in to {0, 1}out.
The size of Funcn is 2out2

in .

Definition 7 (Pseudorandom function (PRF)). Let F : {0, 1}n × {0, 1}in → {0, 1}out be an
efficient function. We say FK is a pseudorandom function (PRF), if for any PPT algorithm
A, there exists a negligible function negl of n such that

Pr[AFK(·)(1n) = 1]− Pr[Af(·)(1n) = 1] ≤ negl,

where AFK(·) (resp. Af(·)) means A can query FK(·) (resp. f(·)) with any input it wants, f
is a random function from Funcn, and the probability is taken over the randomness of A.

We leave the construction of PRF in the next lecture. Here we assume the existence of
PRF and based on it construct encryption scheme.

5.2 Construction

Assume F is a PRF. A scheme Π2 = (KeyGen,Enc,Dec), introduced in the following, achieves
the IND-CPAsecurity withM = {0, 1}out, K = {0, 1}n, and C = {0, 1}in × {0, 1}out.

KeyGen (1n) On input 1n, generate K ← {0, 1}n and output (K,K) as secret keys.

Enc(K,M) On input K and message M , choose randomness r ← {0, 1}in, compute FK(r)⊕
M . Set the ciphertext as C =< r, FK(r)⊕M >

Dec(K,C) On input K and the ciphertext C =< c1, c2 >, return M = FK(c1) ⊕ c2 as the
message.

The correctness is trivial.

Figure 2: Illustration of Π2 according to Fig 3.3 of [KL20]
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Theorem 4. Under the assumption F is a secure PRF, Π2 = (KeyGen,Enc,Dec) is IND-
CPA secure, i.e, for any PPT adversary A, the IND-eav advantage is negligible.

Please refer to section 3.5.2 of [KL20] for the proof.

6 IND-CCA security and authenticated encryption
IND-CPA is still weak since the adversary can do more things than chosen plaintext. It
may have the capability to choose a ciphertext and asked the challenger (or user) to find the
corresponding plaintext. For example, in the case of CAPTCHA [Wik], the adversary (the
client of CAPTCHA) can generate any ciphertext and receives the plaintext fron CAPTCHA
server. Thus, it is necessary to define a stronger security.

We abstract adversary’s capability of choosing a ciphertext and getting the corresponding
plaintext by allowing adversary A to ask the algorithm Dec(K, ·) with any ciphertext (expect
the aim ciphertext) it wants. We say this as allowing A to query the decrption oracle
Dec(K, ·) with ciphertext C 6= C∗ and receive Dec(K,C). This is usually denoted asADec(K,·).

The resulting security is indistinguishably chosen ciphertext security (IND-CCA) and
defined via the following experiment. Let Π = (KeyGen,Enc,Dec) be an encryption scheme.

Expind−ccaΠ (A)

1. The challenger chooses b← {0, 1}

2. The challenger generates (K,K)← KeyGen(1λ)

3. (M0,M1) ← AEnc(K,·),Dec(K,·) // here, AEnc(K,·),Dec(K,·) means A can query the
encryption oracle Enc(K, ·) with any message it wants, and query the decryption oracle
Dec(K, ·) with any ciphertext it wants

4. The challenger runs C∗ = Enc(K,Mb) and returns back C∗

5. AEnc(K,·),Dec(K,·)(C∗) returns b′ as the guess of b //AEnc(K,·),Dec(K,·) means A can query
the encryption oracle Enc(K, ·) with any message it wants, and query the decryption oracle
Dec(K, ·) with any ciphertext (except C∗) it wants

6. Return 1 if b = b′, else 0.

query Enc(K, ·) with m

1. return Enc(K,m)

Definition 8 (IND-CCA Security). The IND-CCA-advantage of an adversary against IND-
CCA security of Π is defined as

Advind−cpaΠ (A) := |Pr[Expind−cpaΠ (A)⇒ 1]− 1/2|.

Π is said to be IND-CCA secure if for any PPT adversary, IND-CCA-advantage is a negli-
gible function of λ.
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We build IND-CCA secure encryption from an IND-CPA secure encryotion and massage
authenticated code defined in the following.

6.1 Massage authenticated code

A massage authenticated code (MAC) scheme MAC consists of three public algorithms
(KeyGen,Mac,Ver).

KeyGen (1λ) On input 1λ, generate K ← K and output a pair key (K,K) as secret keys.

MacK(M) This is a probabilistic or deterministic algorithm. On input secret key K and
message M , generate and output a tag t.

VerK(M, t) This is a deterministic algorithm. On input secret key K a message M and a
tag t, return 1 to indicate valid and 0 to indicate invalid.

Correctness requires that for all (K,K)← KeyGen(1λ), VerK(m,MacK(M)) holds for all
M ∈M.

Security of MAC requires that any adversary can not forge the MAC given several mes-
sage and MAC pairs. The formal security of MAC = (KeyGen,Mac,Ver) against strong
existentially unforgeable under an adaptive chosen-message attack (sUF-CMA) is defined
via the following experiment.

Mac-forgeMAC(A)

1. (K,K)← KeyGen(1n)

2. On input 1n, adversary A is given the oracle access
to MacK(·). Let Query be the list of A’s queries
and corresponding answers.

3. A returns (m, t) and successes if VerK(t, t) = 1 and
(m, t) 6∈ Query. If A successes, return 1, other
wise return 0.

Definition 9 (sUF-CMA). A MAC scheme MAC = (KeyGen,Mac,Ver) is said to be exis-
tentiall y unfor g eable under an ada p tive chosen-message attack (sUF-CMA) secure, if for
any PPT adversary A, there exists a negligible function negl such that

Pr[Mac-forgeMAC(A)→ 1] ≤ negl

Given a PRF F , the following MAC = (KeyGen,Mac,Ver) is a sUF-CMA secure MAC
with fixed-length message.

KeyGen (1λ) On input 1λ, generate K ← K and output a pair key (K,K) as secret keys.

MacK(M) On input K and message M , compute t = FK(M).
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VerK(M, t) On input K a message M and a tag t, return 1 if t = FK(M), otherwise 0.

There are several ways to extend the domain of MAC. At the end of Section 7, HMAC
with arbitrary input length is given.

6.2 IND-CPA and MAC ⇒ IND-CCA

Assume Π2 = (·,Enc,Dec) is an IND-CPA secure encryption and MAC = (·,Mac,Ver) is a
sUF-CMA secure MAC. An IND-CCA secure encryption Π3 = (KeyGen′,Enc′,Dec′) follows.

KeyGen’ (1n) On input 1n, generate K1, K2 ← {0, 1}n and output (K1||K2, K1||K2) as secret
keys.

Enc′(K1||K2,M) On input K = K1||K2 and message M , compute c1 = Enc(K1,M). Com-
pute c2 = MacK2(c1). Set the ciphertext as C =< c1, c2 >

Dec′(K,C) On input K = K1||K2 and the ciphertext C =< c1, c2 >, if VerK2(c1, c2) = 0
abort. Return Dec(K1, c1) as the message.

Correctness of this scheme is guaranteed by the correctness of Π2 and MAC.

Theorem 5. Under the assumption that Π2 is IND-CPA secure and MAC is sUF-CMA
secure, Π3 is IND-CCA secure.

Please refer to [KL20, Theorem 4.19] for the proof.

7 Hash function
Hash functions are functions that take inputs of some length and compress them into fixed-
length outputs. Let n be the fixed length. Hash function is defined as,

H : {0, 1}∗ → {0, 1}n. (5)

Generally, n = 128, 160, 192, or 256.
Concrete hash functions includes MD5 [Riv92], SHA1 [RO05], SHA2 [GD95], and SHA3

[D+15]. Currently, MD5 and SHA-1 are insecure due to practical attacks of [WY05],
[SBK+17].

Two important properties of hash function are collision resistant and one-wayness.
For an adversary A, and security parameter λ, we define collision finding experiment

ExpcrH(A)(λ) and one-wayness experiment respectively.

ExpcrH(A)(λ)

1. X1, X2 ← A(H,λ)

2. IF X1 6= X2 and H(X1) = H(X2), return 1

3. ELSE, return 0.
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ExpowH (A)(λ)

1. X ← {0, 1}∗, Y = H(M)

2. X ′ ← A(H,Y, λ)

3. IF H(X ′) = Y , return 1

4. ELSE, return 0.

Definition 10 (Collision resistance). A hash function is said to be collision resistant if for
any PPT adversary A, there is a negligible function negl such that

Pr[ExpcrH(A)(λ)⇒ 1] = negl.

Definition 11 (One-wayness). A hash function is said to be one way if for any PPT adver-
sary A, there is a negligible function negl such that

Pr[ExpcrH(A)(λ)⇒ 1] = negl.

Theorem 6. If a hash function is collision resistant, then it is one way.

Proof. We assume that there exists a PPT adversary A to break the one-wayness, then there
exists an efficient adversary B to break the collision resistance (by querying A). B works as
following.

BA(H, λ)

1. Pick X ← {0, 1}∗, and give H, Y = H(M), λ to A

2. On receiving X ′ from A(H,Y, λ)

3. Output (X,X ′)

Since |{0, 1}∗| � n, the probability X = X ′ is negligible. On the condition X 6= X ′, if
the probability that A breaks one-wayness is ε, then the probability that B breaks collision
resistance is ε.

Theorem 7. If a hash function is one-way it is not necessary to be collision resistant.

Proof. Suppose H : {0, 1}∗ → {0, 1}n is one-way, the following function

H̃(x) =

{
0n, if x = 0 or 1.

H(x), otherwise.

is also one-way. However, it is not collision-resistant, since inputs 1 and 0 has the same
image.

For general Birthday attack on hash functions, please refer to [KL20, Sec. 5.4.1] for more
details.
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HMAC By combining collision resistant hash function with MAC with fixed length, us-
ing the Hash-then-MAC paradigm, we can construct a MAC for arbitrary length. Rough-
ly, assume MAC = (KeyGen,Mac,Ver) is a MAC with fixed length, the mew MAC run
Mac′(K,M) = MAC(K,H(M))
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