

Do not put all eggs in one basket:

Securing your wallet with threshold cryptography

Haiyang Xue Department of Computer Science, Faculty of Engineering, HKU Sep 2022

(wallet) security in cryptocurrency

What is threshold cryptography

State-of-the-art of threshold cryptography

Applications

Cryptocurrency (wallet) security

List of Hacked Cryptocurrencies

At the beginning of 2014, Mt Gox was handling 70% of Bitcoi's transactions.

In Feb. 2014, Mt. Gox lost about 740,000 bitcoins (6% of all bitcoin in existence at the time) due to a "leak" in the wallet.

DATE	EXCHANGE	CAUSE OF HACK	AMOUNT STOLEN (USD)
2022, January 17	Crypto.com	Unknown	\$34 million
2021, December 11	AscendEX	Obtained access to hot wallet	\$80 million
2021, December 5	BitMart	Obtained access to hot wallet	\$150 million
2021, August 19	Liquid	Obtained access to hot wallet	\$97 million
2021, April 29	Hotbit	Obtained access to hot wallet	Nil
2020, December 23	Livecoin	Compromised system/servers	Unknown
2020, December 21	EXMO	Obtained access to hot wallet	\$4 million
2020, December 1	BTC Markets	Internal staff error/mistake	270,000 user's private details
2020, September 25	KuCoin	Data leak	\$275 million
2020, July 11	Cashaa	Malware	\$3.1 million
2020, June 29	Balancer	Vulnerability in protocol	\$500,000
2020, April 19	Lendf.me	Bugs and Re-entrancy attack	\$24.5 million
2020 April 19	Uniswan	Bugs and Re-entrancy	\$500.000

https://cryptosec.info/exchange-hacks/

https://www.hedgewithcrypto.com/cryptocurrency-exchange-hacks/

A transaction in bitcoin looks like

Cold Wallet: a hardware wallet only stores and protects your private key.

Threshold Cryptography: Distribute the trust

-Do not put all you eggs in one basket

Yvo Desmedt. 1987. Society and group-oriented cryptography: A new concept.

Threshold signature in cryptocurrency

Ex. At least 2 of the 4 partis could generate the signature

Need cryptography tools

- Homomorphic encryption (HE)
- Oblivious Transfer

and so on

Threshold Cryptography Project at NIST

Upcoming call for standardization of threshold schemes

- ECDSA(related to cryptocurrency), EdDSA
- RSA, EC-KE, etc.

Overview

The multiparty paradigm of threshold cryptography enables a secure distribution of trust in the operation of cryptographic primitives. This can apply, for example, to the operations of key generation, signing, encryption and decryption.

In cryptocurrency, loss of the private key = the loss of money

•We need to protect the private key to reduce the risk

Threshold signature (e.g. ECDSA) helps to distribute the trust

State-of-the-art of Threshold Cryptography

Research: Paillier, CL, JL, OT

Industry: ZenGo, Unbounded, Coinbase, etc.

Government: NIST

We focus on Threshold ECDSA

ECDSA

- Digital Signature Standard using Elliptic Curve Cryptography
- Widely deployed in cryptocurrency, such as Bitcoin etc.

Threshold ECDSA

- Protect the key by sharing it among n parties
- Such that no fewer t users (here, t is called the threshold) could generate a valid ECDSA signature

The threshold approach

Threshold Signature (with threshold t = 2)

- KeyGen: The signing key is secretly shared across n parties
- Interaction: The t parties may collaborate to generate the signature.
- Correctness: sign a message in a threshold manner
- Security:
 - Any P_i can not forge signature alone, or learn anything on sk

State-of-the-art in Research

- According to the message (that we would like to sign) is needed or not,
- Offline: Message independent
- Online: Message dependent

Online cost is less, the better

P_1		<i>P</i> ₂
sk ₁		sk ₂
Offline		
Message independent	•	
Online		

Previous works (in case t = 2)

			P_1	<i>P</i> ₂
Schemes	Offline	Online	sk ₁	sk ₂
[Lin17, CCL+19]	Enc	Dec	Message	·
[LN18]	2*MtA	MtA	independent -	
[GG18, CCL+20,YXC21]	4*MtA	Fast	Online	
[DKLS18]	2~3*MtA	Optimal	<i>m</i> Message	
[CGG+20, DKLS19]	4*MtA	Optimal	$\sigma = ECDSA(sk, m)$	

Previous works (in case t = 2)

What we could do, and have done

Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, Handong Cui: Efficient friendly Two-party ECDSA. ACM CCS 2021

What we could do, and have done

State-of-the-art in Industry

ZenGo[×]

Multi-party ECDSA

build passing License GPL v3

This project is a Rust implementation of {t,n}-threshold ECDSA (elliptic curve digital signature algorithm).

Threshold ECDSA includes two protocols:

- Key Generation for creating secret shares.
- Signing for using the secret shares to generate a signature.

ECDSA is used extensively for crypto-currencies such as Bitcoin, Ethereum (secp256k1 curve), NEO (NIST Pcurve) and much more. This library can be used to create MultiSig and ThresholdSig crypto wallet. For a full

State-of-the-art in Industry

Coinbase

The generic protocol interface pkg/core/protocol/protocol.go. implementation.

- Cryptographic Accumulators
- Bulletproof
- Oblivious Transfer
 - Verifiable Simplest OT
 - KOS OT Extension
- Threshold ECDSA Signature
 - DKLs18 DKG and Signing
 - GG20 DKG
 - GG20 Signing
- Threshold Schnorr Signature
 - FROST threshold signature DKG
 - FROST threshold signature Signing

Upcoming NIST Call for Threshold Schemes

https://csrc.nist.gov/projects/threshold-cryptography

Cryptographic Technology Group National Institute of Standards and Technology

Presented at Crypto 2022 Rump Session August 16, 2022 @ Santa Barbara, US

us Brandão: At NIST as a Foreign Guest Researcher (non-employee), Contractor from Strativia. Expressed opinions are from the speaker, not to be construed as official NIST view

202 2020. De 2020. DE

Contribute to NIST's Threshold standardization?

Presentation from NIST at CRYPTO 2022

- Threshold signature could be used to enhance security whenever a signature is used.
- Direct applications
 - Blockchain-based cryptocurrency
 - NFT (non-fungible token)
- Authentication
 - Certificate authentication (CA)
 - etc.

- In cryptocurrency, we should protect the private key
- Threshold cryptography (especially, ECDSA) can provide a high level of private key protection
- It involves several cryptographic tools (homomorphic enc, oblivious transfer, etc.)
- More efforts should be done to standardize threshold schemes.

Thank you Q & A

Emails to haiyangxc@gmail.com are welcome.

Reference

- [XAX+21] Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, Handong Cui: Efficient Online-friendly Two-Party ECDSA Signature. ACM CCS 2021
- [YCX21] Tsz Hon Yuen, Handong Cui, and Xiang Xie. Compact Zero-Knowledge Proofs for Threshold ECDSA with Trustless Setup. PKC 2021
- [CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts. ACM CCS 2020
- [CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
 2020. Bandwidth-efficient threshold ECDSA. PKC 2020
- [CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
 2019. Two-party ECDSA from hash proof systems and efficient instantiations. CRYPTO 2019
- [DKLS18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party threshold ECDSA from ECDSA assumptions. IEEE S&P 2018
- [DKLS19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA from ECDSA assumptions: the multiparty case. IEEE S&P 2019
- [GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. ACM CCS 2018
- [LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. ACM CCS 2018
- [Lin17] Yehuda Lindell. Fast secure two-party ECDSA signing. CRYPTO 2017

Preliminary: Homomorphic Encryption

Additive Homomorphic Encryption Scheme:

$$Enc(m_1 + m_2) = Enc(m_1) \bigoplus Enc(m_2)$$
$$Enc(a \cdot m) = Enc(m)^a = a \odot Enc(m)$$

Schemes	over	Message Space
Paillier	Z_{N^2} (<i>N</i> is RSA modulus)	Z_N
CL Encryption	Class group	Z_q (=#G)

Paillier Encryption

• Let N = pq be RSA modulus. Secret key: $\phi(N)$ public key : N

$Enc(m) = c = (1 + N)^m r^N \mod N^2$

$c^{\phi(N)} = 1 + m \phi(N)N \mod N^2$

Oblivious Transfer (OT)

OT is a fundamental primitive of multiparty computation (MPC).