Efficient MtA from Joye-Libert and Its Application to Threshold ECDSA

Haiyang Xue, Man Ho Au, Mengling Liu, Kwan Yin Chan, Handong Cui, Xiang Xie, Tsz Hon Yuen, Chengru Zhang

- Elliptic Curve Digital Signature Algorithm issued by NIST
- Widely deployed, especially in cryptocurrency, Bitcoin etc.

- Elliptic Curve Digital Signature Algorithm issued by NIST
- Widely deployed, especially in cryptocurrency, Bitcoin etc.

Loss of ECDSA secret key SK = loss of money

- Elliptic Curve Digital Signature Algorithm issued by NIST
- Widely deployed, especially in cryptocurrency, Bitcoin etc.

Loss of ECDSA secret key SK = loss of money

This is known as the problem of single-point-of-failure

- Elliptic Curve Digital Signature Algorithm issued by NIST
- Widely deployed, especially in cryptocurrency, Bitcoin etc.

Loss of ECDSA secret key SK = loss of money

This is known as the problem of single-point-of-failure

"Threshold digital signature" [DF89] aims to address this problem

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In CRYPTO 1989 29/11/2023 Efficient MtA from JL Goal: An ECDSA signature that looks like it was produced by a single party, yet the key is stored in shared form

Naïve idea: divide key into shares

An t out of n threshold ECDSA requires at least t parties of n signers (holding shares) to sign an ECDSA signature

SK

Goal: An ECDSA signature that looks like it was produced by a single party, yet the key is stored in shared form

Naïve idea: divide key into shares

An t out of n threshold ECDSA requires at least t parties of n signers (holding shares) to sign an ECDSA signature 2 out of 4 **ECDSA** signature

SK

Even t-1 parties are compromised, Still Secure!

More about ECDSA

Input: secret key: SK = x, message m

Output: Output (r, s) where

$$s = k^{-1}(H(m) + \mathbf{x} \cdot r),$$

k is the randomness, H(m) is the hash of message m, r can derived from $k \cdot P$

More about ECDSA

Input: secret key: SK = x, message m

Output: Output (r, s) where

$$s = k^{-1}(H(m) + \mathbf{x} \cdot r),$$

k is the randomness, H(m) is the hash of message m, r can derived from $k \cdot P$

- H(m) and r can be public
- k and x should be kept secret

Input: secret key: SK = x, message m

Output: Output (r, s) where

r is derived from $k \cdot P$

Input: secret key: SK = x, message m

Output: Output (r, s) where

r is derived from $k \cdot P$

Challenge When Thresholding

How to securely compute (**non-linear**) k^{-1} and $k^{-1}x$ from shares of x and k

Even worse, some of the parties are controlled by the adversary

Efficient MtA from JL

Several works have been done to address the challenge

[GG18], [LN18], [DKLs18], [DKLs19], [CCL+19], [CCL+20], [CGG+21], [XAX+21], ...

such that $\alpha + \beta = a \cdot b \mod q$

State-of-the-art: MtA

MtA is costly

Tools ($\lambda = 128$)	Computation (ms)	Communication (KB)
Oblivious Transfer (OT) [DKLs18-19]	~10	90
Castagnos-Laguillaumie Enc [CCL+19,20]	~1600	~2
Paillier Enc [LN18,GG18]	~250	7.5

State-of-the-art: MtA

MtA is costly

Tools ($\lambda = 128$)	Computation (ms)	Communication (KB)
Oblivious Transfer (OT) [DKLs18-19]	~10	90
Castagnos-Laguillaumie Enc [CCL+19,20]	~1600	~2
Paillier Enc [LN18,GG18]	~250	7.5

MtA dominates the cost of threshold ECDSA

92%~98% cost of computation and/or communication

State-of-the-art: MtA

MtA is costly

Tools ($\lambda = 128$)	Computation (ms)	Communication (KB)
Oblivious Transfer (OT) [DKLs18-19]	~10	90
Castagnos-Laguillaumie Enc [CCL+19,20]	~1600	~2
Paillier Enc [LN18,GG18]	~250	7.5

Our work: Better MtA from Joye-Libert

MtA is costly

Tools ($\lambda = 128$)	Computation (ms)	Communication (KB)
Oblivious Transfer (OT) [DKLs18-19]	~10	90
Castagnos-Laguillaumie Enc [CCL+19,20]	~1600	~2
Paillier Enc [LN18,GG18]	~250	7.5
Our work Joye-Libert	~200	4.1

When $\lambda = 192,256$, the improvement over Paillier-base MtA achieves 48% (resp. 44%) in communication (resp. computation)

MtA from additive HE (semi-honest)

Such that $\alpha + \beta = a \cdot b \mod q$

MtA from additive HE (semi-honest)

Such that $\alpha + \beta = a \cdot b \mod q$

Simple but insecure against adaptive adv

Such that $\alpha + \beta = a \cdot b \mod q$

Simple but insecure against adaptive adv

Alpha-rays attack [TS21] due to the mismatch of message space (Paillier ~3096 bits) and q (ECDSA~256 bits)

[TS21] Dmytro Tymokhanov and Omer Shlomovits. Alpha-rays: Key extraction attacks on threshold ecdsa implementations, eprint 2021.

Schemes	over	(Message) Space	
ECDSA	<i>mod q</i> (~256 bits)	<i>mod q</i> (~256 bits)	Mismatch
Paillier	$mod N^2$	mod N	

To guarantee security (e.g. against Alpha-rays Attack [TS21])

- P_2 needs to prove: $R_2 = \{C_2; b \mid C_2 = Enc(b), b \in [0, q]\}$
- P_1 needs to prove: $R_1 = \{C_1; a, \alpha \mid C_1 = Enc(ab \alpha), a, \alpha \in [0, q]\}$

Schemes	over	(Message) Space	
ECDSA	<i>mod q</i> (~256 bits)	<i>mod q</i> (~256 bits)	Mismatch
Paillier	$mod N^2$	mod N	

To guarantee security (e.g. against Alpha-rays Attack [TS21])

- P_2 needs to prove: $R_2 = \{C_2; b \mid C_2 = Enc(b), b \in [0, q]\}$
- P_1 needs to prove: $R_1 = \{C_1; a, \alpha \mid C_1 = Enc(ab \alpha), a, \alpha \in [0, q]\}$

zero-knowledge range proof

Simple Observation:

There is waste message space in Paillier Expensive zero-knowledge range proof is required

MtA from Joye-Libert Enc

Schemes	over	(Message) Space	
ECDSA	<i>mod q</i> (~256 bits)	<i>mod q</i> (~256 bits)	Mismatch
Paillier	$mod N^2$	mod N	i i i i i i i i i i i i i i i i i i i
Joye-Libert Enc	mod N	mod 2 ^k	

- P_2 needs to prove: $R_2 = \{C_2; b \mid C_2 = Enc(b), b \in [0, q]\}$
- P_1 needs to prove: $R_1 = \{C_1; a, \alpha \mid C_1 = Enc(ab \alpha), a, \alpha \in [0, q]\}$

[BSJL17] Fabrice Benhamouda, Javier Herranz Sotoca, Marc Joye, and Benoit Libert. Efficient cryptosystems from 2k-th power residue symbols. Journal of cryptology 2017

MtA from Joye-Libert Enc

Schemes	over	(Message) Space	
ECDSA	<i>mod q</i> (~256 bits)	<i>mod q</i> (~256 bits)	Mismatch
Paillier	$mod N^2$	mod N	Wishacen
Joye-Libert Enc	mod N	mod 2 ^k	

- P_2 needs to prove: $R_2 = \{C_2; b \mid C_2 = Enc(b), b \in [0, q]\}$
- P_1 needs to prove: $R_1 = \{C_1; a, \alpha \mid C_1 = Enc(ab \alpha), a, \alpha \in [0, q]\}$

The challenge is no standard zero-knowledge (range) proof for Joye-Libert with large challenge space

[BSJL17] Fabrice Benhamouda, Javier Herranz Sotoca, Marc Joye, and Benoit Libert. Efficient cryptosystems from 2k-th power residue symbols. Journal of cryptology 2017

$$(e - e')m = z_m - z'_m \mod 2^k$$

$$(e - e')m = z_m - z'_m \mod 2^k$$

Current solutions:

- Small challenge space, $e, e' \in \{0, 1\}$; inefficient
- Non-standard soundness [CRFG20]: do not extract all the bits of *m*

$$(e - e')m = z_m - z'_m \mod 2^k$$

Current solutions:

- Small challenge space, $e, e' \in \{0, 1\}$; inefficient
- Non-standard soundness [CRFG20]: do not extract all the bits of *m*

Our solution:

• Modified Joye-Libert: $Enc(m) = C = y^m h^r \mod N$

$$(e - e')m = z_m - z'_m \mod 2^k$$

Current solutions:

- Small challenge space, $e, e' \in \{0, 1\}$; inefficient
- Non-standard soundness [CRFG20]: do not extract all the bits of *m*

Our solution:

- Modified Joye-Libert: $Enc(m) = C = y^m h^r \mod N$
- It is an encryption, and at the same time, an integer commitment

$$(e - e')m = z_m - z'_m \bmod 2^k$$

Current solutions:

- Small challenge space, $e, e' \in \{0, 1\}$; inefficient
- Non-standard soundness [CRFG20]: do not extract all the bits of *m*

Our solution:

- Modified Joye-Libert: $Enc(m) = C = y^m h^r \mod N$
- It is an encryption, and at the same time, an integer commitment
- Standard soundness is based on the strong-RSA assumption

- Three-party TLS handshake
 - for the Decentralized Oracle authenticating TLS data
- Naor-Yung CCA secure encryption
 - Two Joye-Libert Encs with zero-knowledge Range Proof

- Multiparty Computation (MPC)
 - SPDZ_2^k

- Efficient proof on the correctness of Joye-Libert modulus
 - $N = (2^k p' + 1)(2^k q' + 1)$
- More applications of our MtA

• Other candidate of MtA?

- Another choice of MtA from Joye-Libert
 - besides those based on Paillier, CL, and Oblivious Transfer
- Applications
 - Threshold ECDSA, Naor-Yung CCA, Three-party TLS, etc.
- Zero-knowledge range proof for Joye-Libert cryptosystem

