
Efficient Online-friendly

Two-Party ECDSA

Haiyang Xue

Joint work with Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong Cui

To appear in ACM CCS 2021

Outline

 Two-Party ECDSA

Our Contribution

 Generic Two-Party ECDSA from a single MtA

 Technical overview

 Instantiations and implementation

 Paillier

 CL encryption

 OT

Motivation of distributed ECDSA

 ECDSA

 Digital Signature Standard using Elliptic Curve Cryptography

Widely deployed, such as Bitcoin etc.

 Stealing signing key means financial loss etc. (single-point of failure)

 Distributed （Threshold） ECDSA

 Protect the key by sharing among multiple parties

 Such that no fewer user (< 𝑡) could generate a valid ECDSA

How to address

single-points

of failure？

The threshold approach

Motivation of distributed ECDSA

 Threshold Cryptography Project at NIST

 Scope: standardization of threshold schemes

https://csrc.nist.gov/projects/threshold-cryptography； NIST.IR.8214A

https://csrc.nist.gov/projects/threshold-cryptography

Two-Party Signature (with 𝑡 = 2)

 Setup: The signing key is secret shared across 2

parties

 Interaction: The parties may collaborate, but their

key shares remain secret

 Correctness: sign a message in a threshold manner

 Security:

 Any 𝑃𝑖 can not forge signature alone, or learn anything on 𝑠𝑘

 Reduce to the security of original signature

𝑃1 𝑃2

𝑠𝑘1, 𝑚 𝑠𝑘2, 𝑚

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

Two-Party Signature (with 𝑡 = 2)

 Setup: The signing key is secret shared across 2 parties

 Interaction: The parties may collaborate, but their key

shares remain secret

 Correctness: sign a message in a threshold manner

 Security:

 Any 𝑃𝑖 can not forge signature alone, or learn anything on 𝑠𝑘

 Reduce to the security of original signature

𝑃1 𝑃2

𝑠𝑘1, 𝑚 𝑠𝑘2, 𝑚

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

 Efficient Two-Party Schnorr since 90s Two-Party ECDSA is much more challenging

Challenge in Two-Party ECDSA: ECDSA

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

ECDSA Algorithm

 Sign(𝑥,𝑚)

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞; 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑥 ⋅ 𝑟) mod 𝑞

 Output (𝑟, 𝑠)

 Verify(𝑟, 𝑠)

 𝑟𝑥, 𝑟𝑦 = 𝑠−1[𝐻 𝑚 ⋅ 𝑃 + 𝑟 ⋅ 𝑄]

 𝑟 =? 𝑟𝑥

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Challenge in Two-Party ECDSA: Schnorr

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

Schnorr Algorithm

 Sign(𝑥,𝑚)

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞; 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘 + 𝑥 ⋅ 𝐻(𝑅|𝑚) mod 𝑞

 Output (𝑟, 𝑠)

 Verify(𝑟, 𝑠)

 𝑠 ⋅ 𝑃 =?𝑅 + 𝐻 𝑅 𝑚 ⋅ 𝑃

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Challenge in Two-Party ECDSA

Schnorr Algorithm

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞

 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘 + 𝑥 ⋅ 𝐻 𝑅 𝑚 mod 𝑞

 Output (𝑟, 𝑠)

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

ECDSA Algorithm

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞

 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑥 ⋅ 𝑟) mod 𝑞

 Output (𝑟, 𝑠)

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Challenge in Two-Party ECDSA

Schnorr Algorithm

 𝑅 = (𝑘1 + 𝑘2) ⋅ 𝑃

 𝑟 = 𝑟𝑥

 𝑠 = 𝑘1 + 𝑥1 ⋅ 𝐻 𝑅 𝑚 + 𝑘2 + 𝑥2 ⋅ 𝐻 𝑅 𝑚

 Output (𝑟, 𝑠)

ECDSA Algorithm

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞

 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑥 ⋅ 𝑟) mod 𝑞

 Output (𝑟, 𝑠)

Using additive share of 𝑥 and 𝑘
𝑥 = 𝑥1 + 𝑥2
𝑘 = 𝑘1 + 𝑘2

Compute 𝑘−1 and 𝑘−1𝑥 from shares of

𝑥 and 𝑘

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Challenge in Two-Party ECDSA

ECDSA Algorithm

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞

 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑥 ⋅ 𝑟) mod 𝑞

 Output (𝑟, 𝑠)

Compute 𝑘−1 and 𝑘−1𝑥 from shares of

𝑥 and 𝑘
Semi-honest security for any circuit

Goldreich-Micali-Wigderson (GMW)

Ben-Goldwasser-Wigderson(BGW)

etc.

Malicious security for any circuit

GMW compiler
Commitment

Zero-knowledge proof

Inefficient

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Previous works on Two-Party ECDSA

 Homomorphic Enc: CL

Lin

C17

DKLS

S&P18

 Homomorphic Enc: Paillier

 Oblivious Transfer (OT)

CCL+

C19

LN

CCS18

GG

CCS18
CGG+

CCS20

DKLS

S&P19

CCL+

PKC20
YXC

PKC21

Online

Message

dependent

Offline

Message

independent

Previous works on Two-Party ECDSA

 The offline phase (aka. pre-processing) is message

independent.

 We say the online phase of a two-party ECDSA is

optimal if it is non-interactive and its cost is

approximately a verification procedure.

 Two-party ECDSA is online-friendly if its online phase is

optimal.

𝑃1 𝑃2

𝑥1 𝑥2

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚

Online

Message

dependent

Offline

Message

independent

Previous works on Two-Party ECDSA

𝑃1 𝑃2

𝑥1 𝑥2

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚

Schemes Offline Online

[Lin17, CCL+19] Enc Dec

[LN18] 2*MtA MtA

[GG18, CCL+20,YXC21] 4*MtA Fast

[DKLS18] 2~3*MtA Optimal

[CGG+20, DKLS19] 4*MtA Optimal

Online

Message

dependent

Offline

Message

independent

Previous works on Two-Party ECDSA

𝑃1 𝑃2

𝑥1 𝑥2

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚

Schemes Offline Online

[Lin17, CCL+19] Enc Dec

[LN18] 2*MtA MtA

[GG18, CCL+20,YXC21] 4*MtA Fast

[DKLS18] 2~3*MtA Optimal

[CGG+20, DKLS19] 4*MtA Optimal

Multi-to-Add protocol

Paillier ~200ms ~6KB

CL ~1300ms ~1KB

OT cheap ~90KB

Costly

Paillier ~10ms ~3KB

CL ~200ms ~200B

Online

Message

dependent

Offline

Message

independent

Motivation: online-friendly scheme with one MtA

𝑃1 𝑃2

𝑥1 𝑥2

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚

Schemes Offline Online

[Lin17,CCL+19] Enc Dec

[LN18] 2*MtA MtA

[GG18, CCL+20,YCX21] 4*MtA Fast

[DKLS18] 2~3*MtA Optimal

[CGG+20, DKLS19] 4*MtA Optimal

Is it possible?? 1*MtA Optimal

Online

Message

dependent

Offline

Message

independent

Our contribution

𝑃1 𝑃2

𝑥1 𝑥2

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚

Schemes Offline Online

[Lin17,CCL+19] Enc Dec

[LN18] 2*MtA MtA

[GG18, CCL+20,YCX21] 4*MtA Fast

[DKLS18] 2~3*MtA Optimal

[CGG+20, DKLS19] 4*MtA Optimal

This work:

2ECDSA
1*MtA Optimal

Comparison

Technical Overview

Preliminary: Paillier and CL Encryption

 Additive Homomorphic Encryption Scheme:

Enc 𝑚1 +𝑚2 = Enc 𝑚1 ⊕Enc(𝑚2)

Enc 𝑎 ⋅ 𝑚 = Enc 𝑚 𝑎 = 𝑎⊙ Enc(𝑚)

Schemes over Message Space

Paillier 𝑍𝑁2 (𝑁 is RSA modulus) 𝑍𝑁

CL Encryption Class group 𝑍𝑞 (=#𝐺)

Paillier Encryption

 Let 𝑁 = 𝑝𝑞 be RSA modulus.

Secret key: 𝑝, 𝑞 public key : 𝑁

Enc 𝑁,𝑚 = 1 + N 𝑚 𝑟𝑁 𝑚𝑜𝑑 𝑁2

Enc 𝑁, (𝑚1+𝑚2) 𝑚𝑜𝑑 𝑁 = Enc 𝑁,𝑚1 ⊕Enc 𝑁,𝑚2

Preliminary: Multi-to-Add Protocol

Multi-to-Add Protocol (MtA)

𝑃1 𝑃2

𝑎 𝑏
MtA

𝛽𝛼

Such that 𝛼 + 𝛽 = 𝑎 ⋅ 𝑏 mod 𝑞

ECDSA

𝑠 = 𝑘−1(𝐻 𝑚 + 𝑥 ⋅ 𝑟)

 𝐻 𝑚 and 𝑟 is publicly known to both parties

 𝑥 is the secret key

 𝑘 is the nonce

Lin17 and CCL+19

𝑠 = 𝑘1
−1 ⋅ 𝑘2

−1 (𝐻 𝑚 + 𝑥1 ⋅ 𝑥2⋅ 𝑟)

Multiplicative share of 𝑘 = 𝑘1 ⋅ 𝑘2 and 𝑥 = 𝑥1 ⋅ 𝑥2

 Goal:

𝑠1

 If 𝑃1 has sent Enc 𝑥1 to 𝑃2 in the Key Generation phase

On receiving message 𝑚, 𝑃2 could compute

Enc 𝑠1 = Enc (𝑘2
−1 𝐻 𝑚 + 𝑥1 ⋅ 𝑥2⋅ 𝑟)

With decryption key, 𝑃1 could compute 𝑠1 and then 𝑠.

Lin17 and CCL+19

𝑠 = 𝑘1
−1 ⋅ 𝑘2

−1 (𝐻 𝑚 + 𝑥1 ⋅ 𝑥2⋅ 𝑟)

Multiplicative share of 𝑘 = 𝑘1 ⋅ 𝑘2 and 𝑥 = 𝑥1 ⋅ 𝑥2

 Goal:

𝑠1

 If 𝑃1 has sent Enc 𝑥1 to 𝑃2 in the Key Generation phase

On receiving message 𝑚, 𝑃2 could compute

Enc 𝑠1 = Enc (𝑘2
−1 𝐻 𝑚 + 𝑥1 ⋅ 𝑥2⋅ 𝑟)

With decryption key, 𝑃1 could compute 𝑠1 and then 𝑠.

However, decryption is required in the online phase;

Furthermore, non-standard assumption is required, such as Paillier-EC

DKLS18

𝑠 = 𝑘1
−1 ⋅ 𝑘2

−1 𝐻 𝑚 + 𝑘1
−1𝑥1 ⋅ 𝑘2

−1𝑥2⋅ 𝑟

Multiplicative share of 𝑘 = 𝑘1 ⋅ 𝑘2 and 𝑥 = 𝑥1 ⋅ 𝑥2

 Goal:

MtA MtA

𝛼1 𝛼2 𝛽1 𝛽2

𝑠 = (𝛼1 + 𝛼2)𝐻 𝑚 + (𝛽1 + 𝛽2) ⋅ 𝑟

 Two MtA are required.

LNR18 etc…

𝑠 = 𝑘1 + 𝑘2
−1[𝐻 𝑚 + (𝑥1+𝑥2) ⋅ 𝑟]

 Additive share of 𝑘 = 𝑘1 + 𝑘2 and 𝑥 = 𝑥1 + 𝑥2

 Goal:

2*MtA

𝛼1 𝛼2
𝑠 = 𝛼1 + 𝛼2 𝐻 𝑚 + (𝛼1 + 𝛼2)(𝑥1 + 𝑥2) ⋅ 𝑟

2*MtA

𝑠 = 𝛼1 + 𝛼2 𝐻 𝑚 + (𝛽1 + 𝛽2) ⋅ 𝑟

Step 1

Step 2

LNR18 etc…

𝑠 = 𝑘1 + 𝑘2
−1[𝐻 𝑚 + (𝑥1+𝑥2) ⋅ 𝑟]

 Additive share of 𝑘 = 𝑘1 + 𝑘2 and 𝑥 = 𝑥1 + 𝑥2

 Goal:

2*MtA

𝛼1 𝛼2
𝑠 = 𝛼1 + 𝛼2 𝐻 𝑚 + (𝛼1 + 𝛼2)(𝑥1 + 𝑥2) ⋅ 𝑟

 4 MtA are required.

2*MtA

𝑠 = 𝛼1 + 𝛼2 𝐻 𝑚 + (𝛽1 + 𝛽2) ⋅ 𝑟

Our Construction with one MtA

We start from share of 𝑘 = 𝑘1 ⋅ 𝑘2 and 𝑥 = 𝑥1 + 𝑥2

 Goal:

𝑠 = 𝑘1
−1 ⋅ 𝑘2

−1[𝐻 𝑚 + (𝑥1+𝑥2) ⋅ 𝑟]

If 𝑃1, 𝑃2 can corporately compute 𝑥1
′ , 𝑥2

′ such that

𝑥1+𝑥2= 𝑥1
′𝑘2 + 𝑥2

′

then

𝑠 = 𝑘1
−1 ⋅ [𝑘2

−1(𝐻 𝑚 + 𝑟𝑥2
′) + 𝑟𝑥1

′]

𝑃2 could compute by itself

Our Construction with one MtA

We start from share of 𝑘 = 𝑘1 ⋅ 𝑘2 and 𝑥 = 𝑥1 + 𝑥2

All we need: 𝑃1, 𝑃2 compute 𝑥1
′ , 𝑥2

′ such that

𝑥1+𝑥2= 𝑥1
′𝑘2 + 𝑥2

′

MtA

 Only one MtA is required

𝑡1 𝑡2

Then, 𝑥2
′ = 𝑥2 − 𝑡2 + (𝑥1 + 𝑡1)

One-time Padding

Instantiations

MtA from Paillier

 Enc is the Paillier encryption

 𝜋𝑃, 𝜋𝐵 , 𝜋𝐴 is the zero-knowledge proof for the correctness generation of 𝑁, 𝑐𝐵 , 𝑐𝐴 respectively

Paillier-based Two-Party ECDSA

MtA from CL encryption

 Enc𝑐𝑙 is the CL encryption over class group

 𝜋𝐶𝐿 is the zero-knowledge proof for the correctness generation of 𝑐𝐵 respectively

CL-based Two-Party ECDSA

MtA from Oblivious Transfer (OT)

OT
𝑚0, 𝑚1 𝑏 ∈ {0, 1}

𝑚𝑏

OT is a fundamental primitive of multiparty computation (MPC).

MtA from Oblivious Transfer (OT)

OT
𝑚0, 𝑚1 𝑏 ∈ {0, 1}

𝑚𝑏

MtA from Oblivious Transfer (OT)

P1 (𝑏 ≔ 𝑏0, 𝑏1, … , 𝑏𝑛−1)P2 (𝑎)

Randomly pick 𝑠0, … , 𝑠𝑛−1
For each i, define 𝑡𝑖

0 = 2𝑖𝑎 + 𝑠𝑖; 𝑡𝑖
1 = 𝑠𝑖

OT

(𝑖-th invocation)

𝑏𝑖𝑡𝑖
0 𝑡𝑖

1

𝑣𝑖 ≔ 𝑡𝑖
𝑏𝑖

𝛽 = ∑𝑣𝑖
𝛼 = −∑𝑠𝑖

Note: 𝛼 + 𝛽 = 𝑎𝑏

OT

MtAs from HE vs OT

OT-based MtA Paillier/CL-based MtA

High communication Low communication

Low computation High computation

No zero-knowledge proof zero-knowledge proof

No extra assumption May need extra assumptions

Comparison in one figure

offline Cost

Overall Cost

online Cost

Our work

Conclusion

We propose a online-friendly two-party ECDSA such that

 its online computation is extremely fast

and its offline phase just need a single execution of MtA

 Our scheme could be instantiated with Paillier/CL encryption and OT

Following works: 𝑡-out-of-𝑛 ECDSA

 This work only supports two-party, i.e., 2-out-of-𝑛.

 How about 𝑡-out-of-𝑛 ECDSA?

The threshold approach

One more thing: SM2

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

SM2 Algorithm

 Sign(𝑥,𝑚)

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞; 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑥−1[𝑘 + 𝑟 + 𝐻 𝑚] mod 𝑞

 Output (𝑟, 𝑠)

 Verify(𝑟, 𝑠)

 𝑠 ⋅ 𝑄 =?𝑅 + 𝑟 ⋅ 𝑃 + 𝐻(𝑚) ⋅ 𝑃

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Thanks

Q & A

Reference

 [CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.

2019. Two-party ECDSA from hash proof systems and efficient instantiations. CRYPTO 2019

 [CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.

2020. Bandwidth-efficient threshold ECDSA. PKC 2020

 [CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC

Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts. ACM CCS 2020

 [DKLS18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party threshold

ECDSA from ECDSA assumptions. IEEE S&P 2018

 [DKLS19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat.Threshold ECDSA from ECDSA

assumptions: the multiparty case. IEEE S&P 2019

 [GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless

setup. ACM CCS 2018

 [Lin17] Yehuda Lindell. Fast secure two-party ECDSA signing. CRYPTO 2017

 [LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key

generation and applications to cryptocurrency custody. ACM CCS 2018

 [YCX21] Tsz Hon Yuen, Handong Cui, and Xiang Xie. Compact Zero-Knowledge Proofs for Threshold

ECDSA with Trustless Setup. PKC 2021

