Efficient Online-friendly Two-Party ECDSA

Haiyang Xue

Joint work with Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong Cui To appear in ACM CCS 2021

- Two-Party ECDSA
- Our Contribution
 - Generic Two-Party ECDSA from a single MtA
- Technical overview
- Instantiations and implementation
 - Paillier
 - CL encryption
 - OT

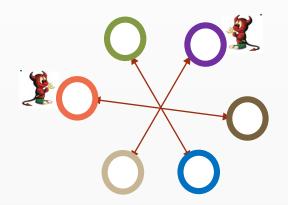
Motivation of distributed ECDSA

ECDSA

- Digital Signature Standard using Elliptic Curve Cryptography
- Widely deployed, such as Bitcoin etc.
- Stealing signing key means financial loss etc. (single-point of failure)

How to address single-points of failure ?

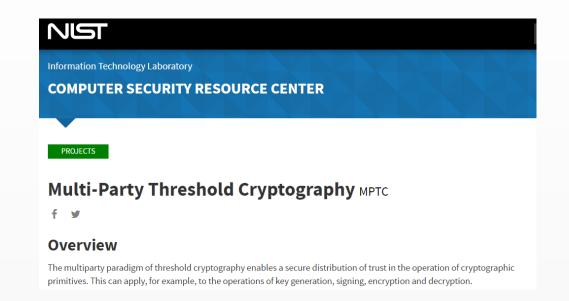
- Distributed (Threshold) ECDSA
 - Protect the key by sharing among multiple parties
 - Such that no fewer user (< t) could generate a valid ECDSA



The threshold approach

Motivation of distributed ECDSA

- Threshold Cryptography Project at NIST
 - Scope: standardization of threshold schemes



4.1.2.2 ECDSA signature. A technical difficulty in threshold ECDSA is jointly computing a secret sharing of a multiplicative inverse of an additively-shared secret value. This is less straight-

Two-Party Signature (with t = 2)

- Setup: The signing key is secret shared across 2 parties
- Interaction: The parties may collaborate, but their key shares remain secret
- Correctness: sign a message in a threshold manner
- Security:
 - Any P_i can not forge signature alone, or learn anything on sk
 - Reduce to the security of original signature

P_2
sk_2, m

 $\sigma = Sign(sk,m)$

Two-Party Signature (with t = 2)

- **Setup:** The signing key is secret shared across 2 parties P_1
- Interaction: The parties may collaborate, but their key sk_1, m sk_2, m shares remain secret
- Correctness: sign a message in a threshold manner

Security:

- Any P_i can not forge signature alone, or learn anything on sk
- Reduce to the security of original signature

 $\sigma = Sign(sk, m)$

 P_2

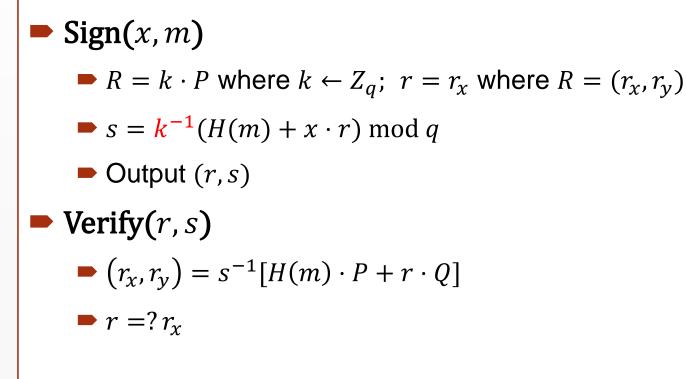
• Efficient Two-Party Schnorr since 90s

Two-Party ECDSA is much more challenging

Challenge in Two-Party ECDSA: ECDSA

Public parameters: $G = \langle P \rangle$ with prime order q

Secret signing key: $x \leftarrow Z_q$ Public key: $Q = x \cdot P$



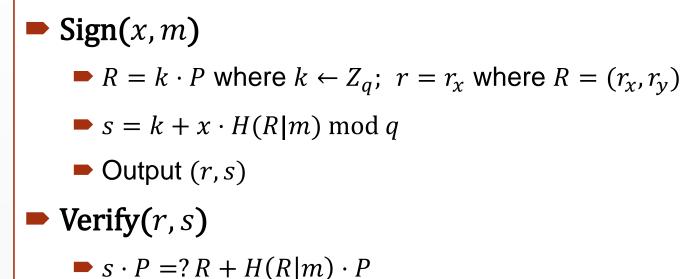
Challenge in Two-Party ECDSA: Schnorr

Public parameters: $G = \langle P \rangle$ with prime order q

Secret signing key: $x \leftarrow Z_q$

Public key: $Q = x \cdot P$

Schnorr Algorithm



Challenge in Two-Party ECDSA

Public parameters: $G = \langle P \rangle$ with prime order q

Secret signing key: $x \leftarrow Z_q$

Schnorr Algorithm

- $R = k \cdot P$ where $k \leftarrow Z_q$
- $r = r_x$ where $R = (r_x, r_y)$
- $s = k + x \cdot H(R|m) \mod q$
- Output (r, s)

Public key: $Q = x \cdot P$

ECDSA Algorithm

•
$$R = k \cdot P$$
 where $k \leftarrow Z_q$

•
$$r = r_x$$
 where $R = (r_x, r_y)$

•
$$s = k^{-1}(H(m) + x \cdot r) \mod q$$

• Output
$$(r, s)$$

Challenge in Two-Party ECDSA

Public parameters: $G = \langle P \rangle$ with prime order q

Secret signing key: $x \leftarrow Z_q$

Schnorr Algorithm

- $\blacksquare R = (k_1 + k_2) \cdot P$
- $r = r_x$
- $s = k_1 + x_1 \cdot H(R|m) + k_2 + x_2 \cdot H(R|m)$
- Output (r, s)

Public key: $Q = x \cdot P$

ECDSA Algorithm

•
$$R = k \cdot P$$
 where $k \leftarrow Z_q$

•
$$r = r_x$$
 where $R = (r_x, r_y)$

•
$$s = k^{-1}(H(m) + x \cdot r) \mod q$$

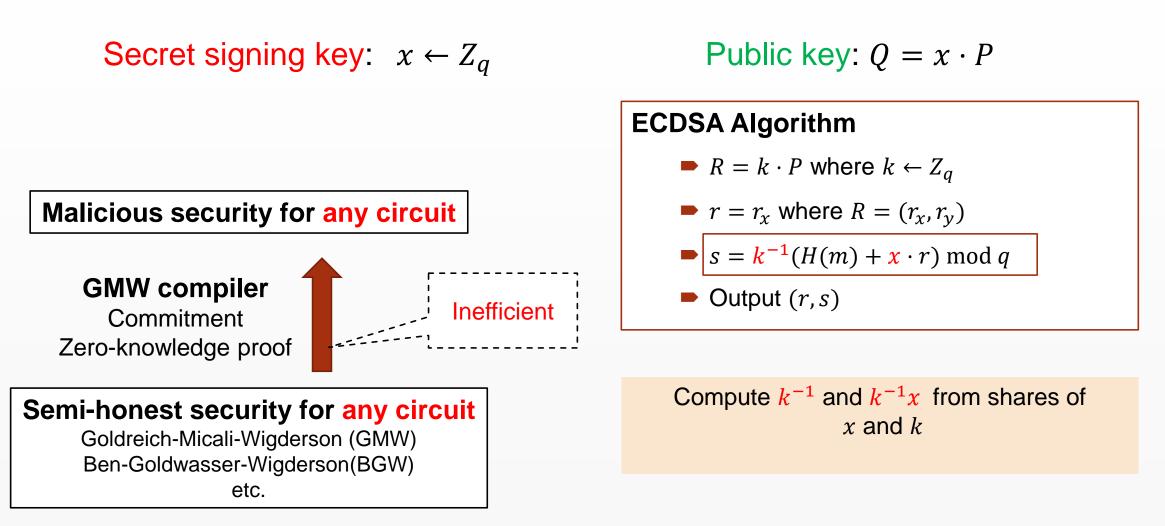
• Output
$$(r, s)$$

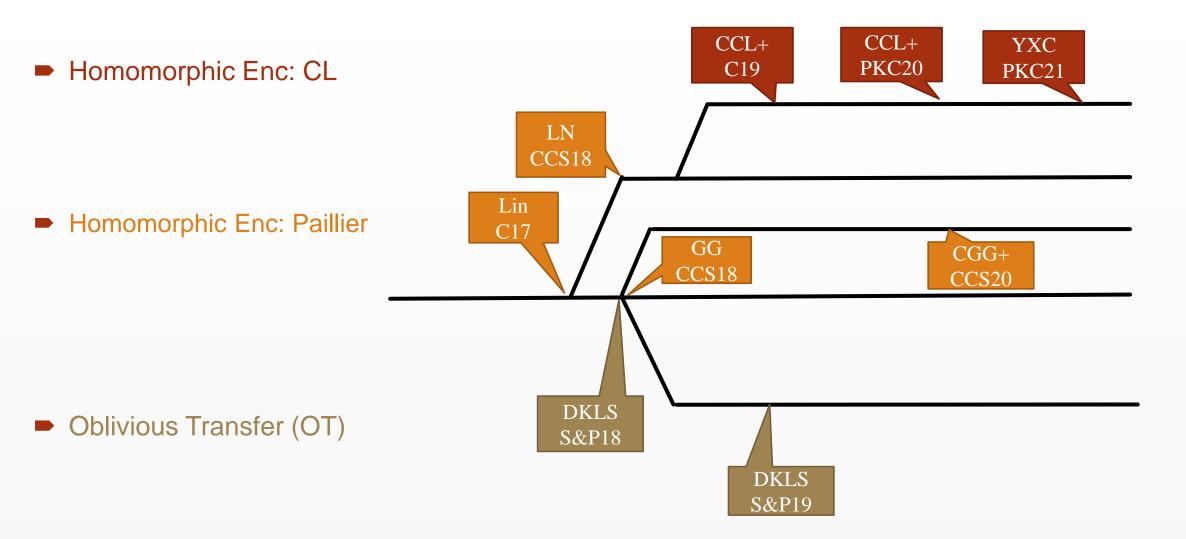
Using additive share of x and k

$$x = x_1 + x_2$$
$$k = k_1 + k_2$$

Compute k^{-1} and $k^{-1}x$ from shares of *x* and *k*

Public parameters: $G = \langle P \rangle$ with prime order q





- The offline phase (aka. pre-processing) is message independent.
- We say the online phase of a two-party ECDSA is optimal if it is non-interactive and its cost is approximately a verification procedure.
- Two-party ECDSA is online-friendly if its online phase is optimal.

P_1		<i>P</i> ₂
<i>x</i> ₁		<i>x</i> ₂
Offline		
Message independent	4	

Online	<i>m</i>
Message dependent	$\sigma = Sign(sk,m)$

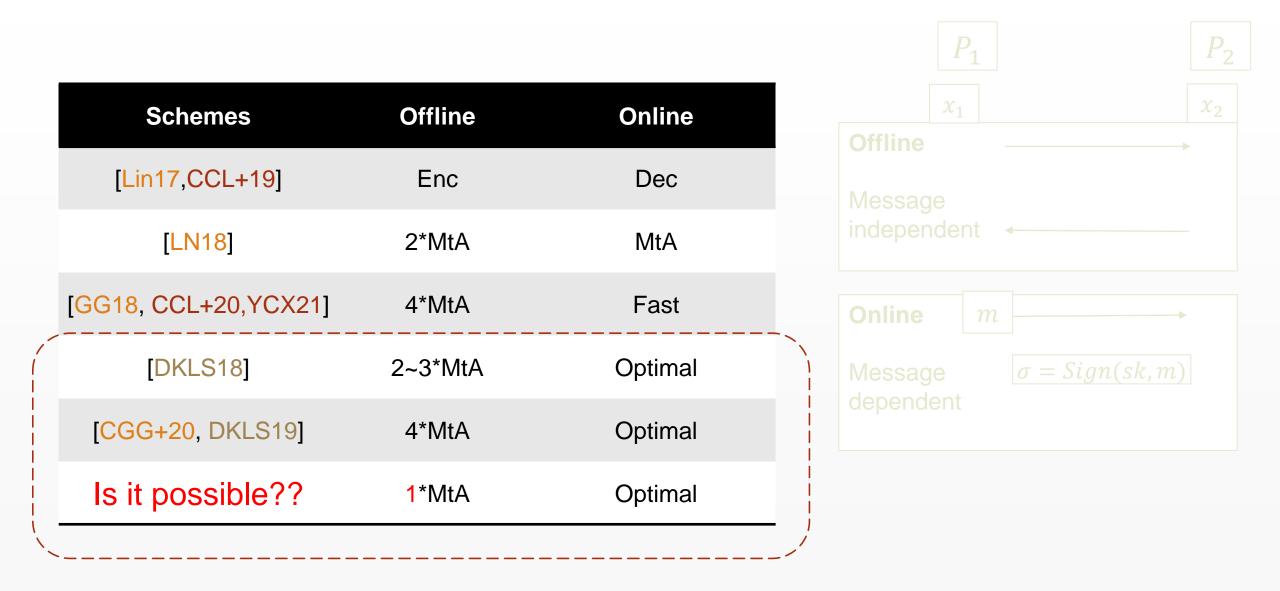
			P_1 P_2
Schemes	Offline	Online	x_1 x_2
[Lin17, CCL+19]	Enc	Dec	Offline
[LN18]	2*MtA	MtA	independent
[GG18, CCL+20,YXC21]	4*MtA	Fast	Online m — — — — — — — — — — — — — — — — — —
[DKLS18]	2~3*MtA	Optimal	Message $\sigma = Sign(sk,m)$
[CGG+20, DKLS19]	4*MtA	Optimal	dependent

Π

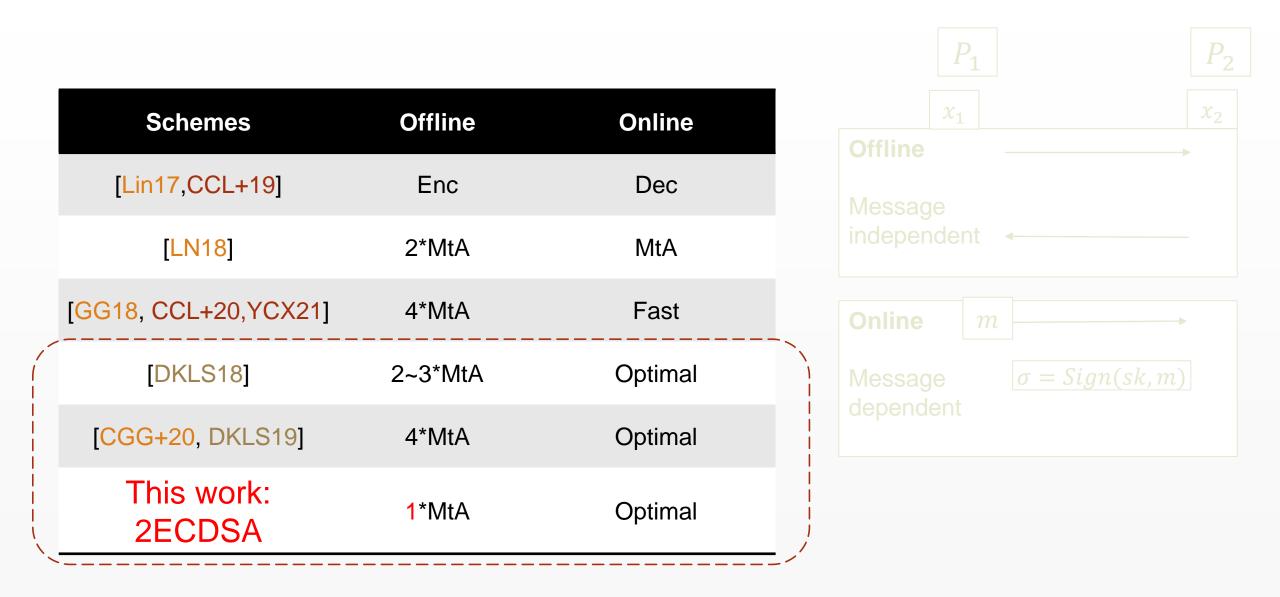
Π

		L. L			
			Paillier	~10ms	~3KB
Schemes	Offline	Online	CL	~200ms	~200B
[Lin17, CCL+19]	Enc	Dec Costly	Multi-to-Add	protocol	
[LN18]	2*MtA	MtA.	Paillier	~200ms	~6KB
[GG18, CCL+20,YXC21]	4*MtA	Fast	CL	~1300ms	~1KB
[DKLS18]	2~3*MtA	Optimal	ОТ	cheap	~90KB
[CGG+20, DKLS19]	4*MtA	Optimal			

Motivation: online-friendly scheme with one MtA



Our contribution



Signing Protocols	Computation		Commu	nication	Passes
	offline	online	offline	online	1 40000
LNR18 [26]	28E + 157M (461ms)	14E + 121M (302ms)	$32\ell_N+67\kappa~(12\mathrm{KB})$	$16\ell_N+51\kappa~(6.6{\rm KB})$	8
GG18 [19]	42E + 40M (1237ms)	17M (3ms)	$40\ell_N+18\kappa~(15.5{\rm KB})$	9к (288B)	9
CGGMP20 [6]	208E + 44M (2037ms)	2M (0.2ms)	$118\ell_N+20\kappa~(44\mathrm{KB})$	к (32В)	4
2ECDSA (Paillier)	14E + 11M (226ms)	2M (0.2ms)	$16\ell_N+11\kappa~(6.3{\rm KB})$	к (32В)	3
Lin17 [25] (Paillier-EC)	2E + 8M (34ms)	1E + 2M (8ms)	12κ (192B)	$2\ell_N$ (768B)	3
GG18 [19] (Paillier-EC)	18E + 40M (360ms)	17M (3ms)	$16\ell_N+18\kappa~(6.6{\rm KB})$	9к (288B)	9
2ECDSA (Paillier-EC)	8E + 14M (141ms)	2M (0.2ms)	$10\ell_N+12\kappa~(4.1{\rm KB})$	к (32В)	3
CCLST19 [7]	4E + 8M (475ms)	1E + 2M (190ms)	6κ (208B)	14κ (505B)	3
CCLST20 [8]	28E + 8M (3316ms)	17M (3ms)	140κ (4.5KB)	9к (288B)	8
YCX21 [33]	28E + 8M (4550ms)	17M (3ms)	140κ (4.5KB)	9к (288B)	8
2ECDSA (CL)	11E + 11M (1386ms)	2M (0.2ms)	53κ (1.7KB)	к (32В)	3
DKLS18 [15]	13M (2.9ms)	2M (0.2ms)	$16\kappa^2$ (169.8KB)	к (32В)	2
DKLS19 [16]	13M (3.7ms)	2M (0.2ms)	$20\kappa^2$ (180KB)	к (32B)	7
2ECDSA (OT)	11M (2.6ms)	2M (0.2ms)	$8\kappa^2$ (90.9KB)	к (32В)	3

Technical Overview

Preliminary: Paillier and CL Encryption

Additive Homomorphic Encryption Scheme:

$$Enc(m_1 + m_2) = Enc(m_1) \bigoplus Enc(m_2)$$
$$Enc(a \cdot m) = Enc(m)^a = a \odot Enc(m)$$

Schemes	over	Message Space
Paillier	Z_{N^2} (N is RSA modulus)	Z_N
CL Encryption	Class group	Z_q (=#G)

• Let N = pq be RSA modulus.

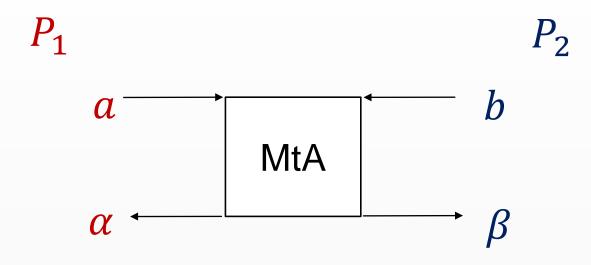
Secret key: *p*, *q* public key : *N*

$\operatorname{Enc}(N,m) = (1+N)^m r^N \mod N^2$

 $\operatorname{Enc}(N, (m_1+m_2) \mod N) = \operatorname{Enc}(N, m_1) \oplus \operatorname{Enc}(N, m_2)$

Preliminary: Multi-to-Add Protocol

Multi-to-Add Protocol (MtA)



Such that $\alpha + \beta = \alpha \cdot b \mod q$

$s = k^{-1}(H(m) + x \cdot r)$

- H(m) and r is publicly known to both parties
- x is the secret key
- k is the nonce

• Multiplicative share of $k = k_1 \cdot k_2$ and $x = x_1 \cdot x_2$

• Goal:

$$s = k_1^{-1} \cdot k_2^{-1} (H(m) + x_1 \cdot x_2 \cdot r)$$

$$S_1$$

• If P_1 has sent Enc (x_1) to P_2 in the Key Generation phase

• On receiving message m, P_2 could compute Enc $(s_1) = \text{Enc}(k_2^{-1}(H(m) + x_1 \cdot x_2 \cdot r))$

• With decryption key, P_1 could compute s_1 and then s.

Lin17 and CCL+19

• Multiplicative share of $k = k_1 \cdot k_2$ and $x = x_1 \cdot x_2$

• Goal:

$$s = k_1^{-1} \cdot k_2^{-1} (H(m) + x_1 \cdot x_2 \cdot r)$$

$$S_1$$

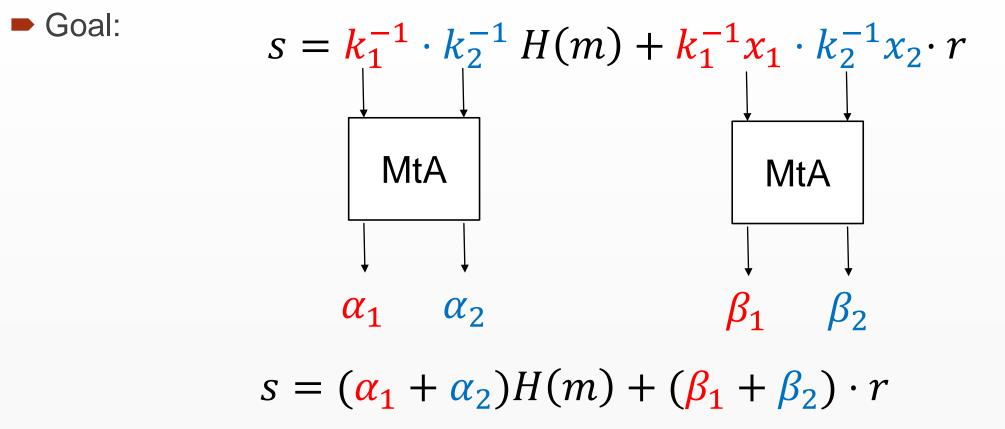
• If P_1 has sent Enc (x_1) to P_2 in the Key Generation phase

However, decryption is required in the online phase;

• Furthermore, non-standard assumption is required, such as Paillier-EC $Enc(s_1) = Enc(k_2^{-1}(H(m) + x_1 \cdot x_2 \cdot r))$

• With decryption key, P_1 could compute s_1 and then s.

• Multiplicative share of $k = k_1 \cdot k_2$ and $x = x_1 \cdot x_2$



Two MtA are required.

Additive share of $k = k_1 + k_2$ and $x = x_1 + x_2$

$$s = (k_{1} + k_{2})^{-1} [H(m) + (x_{1} + x_{2}) \cdot r]$$

$$\downarrow 2^{*}MtA$$

$$\downarrow \alpha_{1}$$

$$a_{2}$$

$$s = (\alpha_{1} + \alpha_{2})H(m) + (\alpha_{1} + \alpha_{2})(x_{1} + x_{2}) \cdot \frac{\alpha_{1}}{2^{*}MtA}$$

4 MtA are required.

 $s = (\alpha_1 + \alpha_2)H(m) + (\beta_1 + \beta_2) \cdot r$

r

Our Construction with one MtA

• We start from share of $k = k_1 \cdot k_2$ and $x = x_1 + x_2$

$$s = k_1^{-1} \cdot k_2^{-1} [H(m) + (x_1 + x_2) \cdot r]$$

If P_1 , P_2 can corporately compute x'_1 , x'_2 such that

$$x_1 + x_2 = x_1'k_2 + x_2'$$

then

Goal:

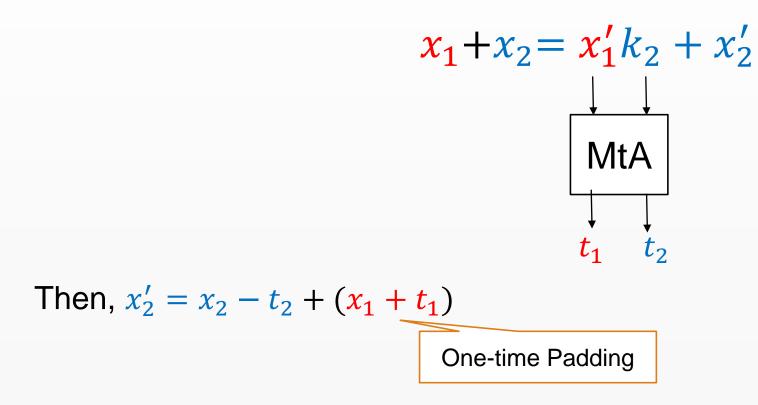
$$s = k_1^{-1} \cdot [k_2^{-1}(H(m) + rx_2') + rx_1']$$

$$P_2 \text{ could compute by itself}$$

Our Construction with one MtA

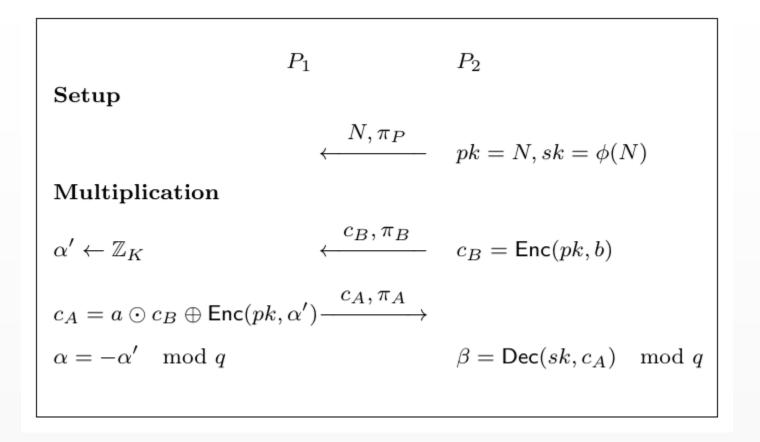
• We start from share of $k = k_1 \cdot k_2$ and $x = x_1 + x_2$

All we need: P_1 , P_2 compute x'_1 , x'_2 such that



Only one MtA is required

Instantiations



- Enc is the Paillier encryption
- π_P, π_B, π_A is the zero-knowledge proof for the correctness generation of N, c_B, c_A respectively

Paillier-based Two-Party ECDSA

Schemes	Computation		Communication	
	Offline	Online	Offline	Online
LNR18 [25]	$461 \mathrm{ms}$	302 ms	12.1KB	$6.6 \mathrm{KB}$
GG18 [18]	$1237 \mathrm{ms}$	3 ms	$15.5 \mathrm{KB}$	288B
CGGMP20 [6]	$2037 \mathrm{ms}$	$0.2 \mathrm{ms}$	44 KB	32B
2ECDSA(Paillier)	226 ms	$0.2 \mathrm{ms}$	$6.3 \mathrm{KB}$	32B
Lin17 [24]	34ms	8 m s	192B	768B
GG18(Paillier-EC)[18]	$360 \mathrm{ms}$	3 ms	$6.6 \mathrm{KB}$	288B
2ECDSA(Paillier-EC)	$141 \mathrm{ms}$	$0.2 \mathrm{ms}$	$4.1 \mathrm{KB}$	32B

Table 3: Cost comparison of Paillier-based schemes.

MtA from CL encryption

 $\begin{array}{ccc} P_{1}(\mathsf{pk},a) & P_{2}(\mathsf{pk},\mathsf{sk};b) \\ \\ \alpha' \leftarrow \mathbb{Z}_{q} & \xleftarrow{c_{B},\pi_{CL}} & c_{B} = \mathsf{Enc}_{cl}(\mathsf{pk},b) \\ \\ c_{A} = a \odot c_{B} \oplus \mathsf{Enc}_{cl}(pk,\alpha') \xrightarrow{c_{A}} & \\ \\ \alpha = -\alpha' \mod q & \beta' = \mathsf{Dec}_{cl}(\mathsf{sk},c_{A}) \\ \\ \beta = \beta' \mod q \end{array}$

- Enc_{cl} is the CL encryption over class group
- π_{CL} is the zero-knowledge proof for the correctness generation of c_B respectively

CL-based Two-Party ECDSA

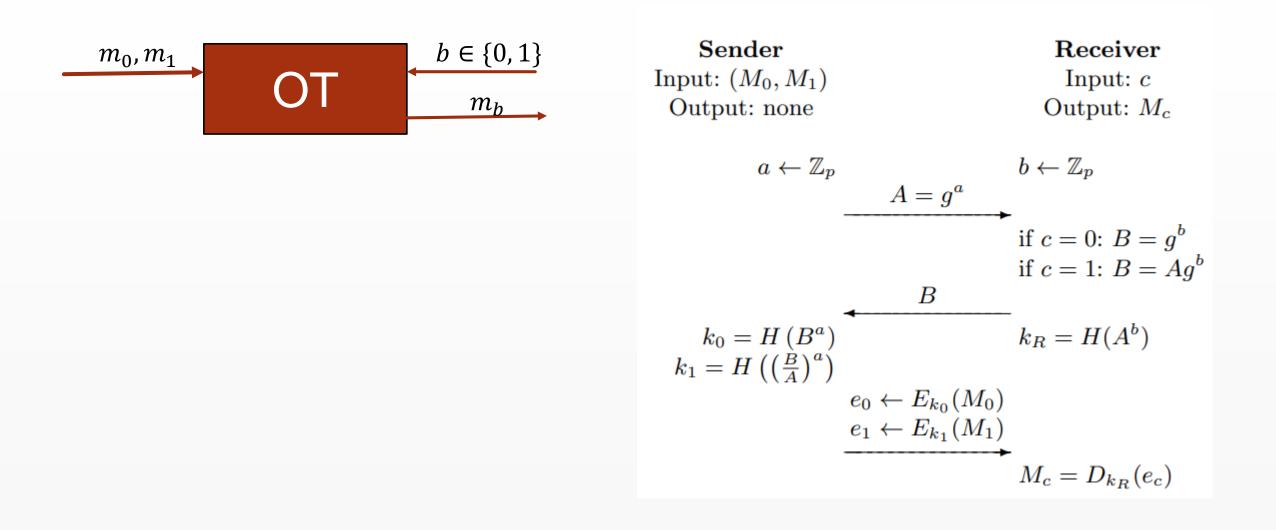
Schemes	Computation		Commu	nication
	Offline	Online	Offline	Online
CCLST19 [7]	$475 \mathrm{ms}$	$190 \mathrm{ms}$	505B	208B
CCLST20 [8]	3316 ms	3 ms	$4.5 \mathrm{KB}$	288B
YCX21 [31]	$4550 \mathrm{ms}$	3 ms	$4.5 \mathrm{KB}$	288B
$2\text{ECDSA}(\mathrm{CL})$	$1386 \mathrm{ms}$	$0.2 \mathrm{ms}$	$1.7 \mathrm{KB}$	32B

Table 5: Cost comparison of CL-based schemes.

MtA from Oblivious Transfer (OT)

OT is a fundamental primitive of multiparty computation (MPC).

MtA from Oblivious Transfer (OT)



MtA from Oblivious Transfer (OT)

P₂ (*a*) Randomly pick $s_0, ..., s_{n-1}$ For each i, define $t_i^0 = 2^i a + s_i; t_i^1 = s_i$

$$\begin{array}{c|c} t_i^0 & t_i^1 \\ \hline & OT \\ \hline & (i\text{-th invocation}) \end{array} \begin{array}{c} b_i \\ \hline v_i \coloneqq t_i^{b_i} \end{array}$$

 $\alpha = -\sum s_i \qquad \beta = \sum v_i$

Note: $\alpha + \beta = ab$

$$P_1 (b \coloneqq b_0, b_1, \dots, b_{n-1})$$

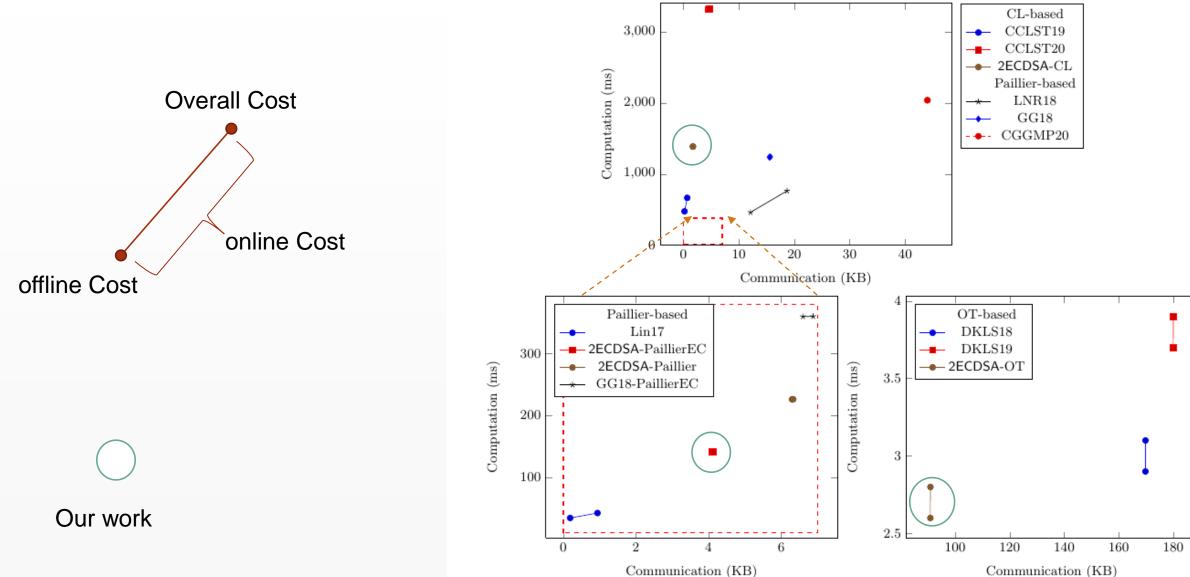
Schemes	Compu	itation	Commun	ication
001101100	Offline	Online	Offline	Online
DKLS18 [15]	$2.9\mathrm{ms}$	$0.2 \mathrm{ms}$	$169.8 \mathrm{KB}$	32B
DKLS19 [16]	$3.7\mathrm{ms}$	$0.2 \mathrm{ms}$	$180 \mathrm{KB}$	32B
2ECDSA(OT)	$2.6\mathrm{ms}$	$0.2 \mathrm{ms}$	$90.9 \mathrm{KB}$	32B

OT

Table 4: Cost comparison of OT-based schemes.

OT-based MtA	Paillier/CL-based MtA
High communication	Low communication
Low computation	High computation
No zero-knowledge proof	zero-knowledge proof
No extra assumption	May need extra assumptions

Comparison in one figure



Communication (KB)

We propose a online-friendly two-party ECDSA such that

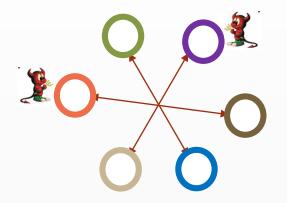
- its online computation is extremely fast
- and its offline phase just need a single execution of MtA

Our scheme could be instantiated with Paillier/CL encryption and OT

Following works: *t*-out-of-*n* ECDSA

This work only supports two-party, i.e., 2-out-of-n.

How about *t*-out-of-*n* ECDSA?

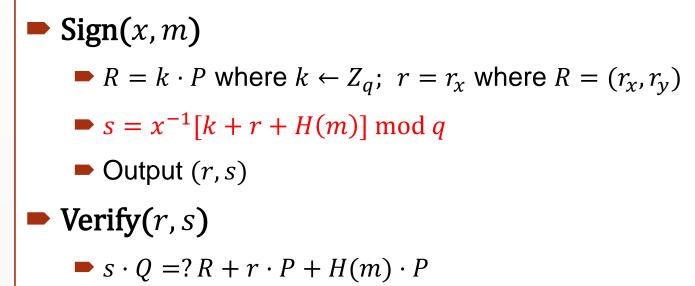


The threshold approach

Public parameters: $G = \langle P \rangle$ with prime order q

Secret signing key: $x \leftarrow Z_q$ Public key: $Q = x \cdot P$

SM2 Algorithm



Thanks

Q & A

- [CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
 2019. Two-party ECDSA from hash proof systems and efficient instantiations. CRYPTO 2019
- [CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
 2020. Bandwidth-efficient threshold ECDSA. PKC 2020
- [CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts. ACM CCS 2020
- [DKLS18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party threshold ECDSA from ECDSA assumptions. IEEE S&P 2018
- [DKLS19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA from ECDSA assumptions: the multiparty case. IEEE S&P 2019
- [GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. ACM CCS 2018
- [Lin17] Yehuda Lindell. Fast secure two-party ECDSA signing. CRYPTO 2017
- [LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. ACM CCS 2018
- [YCX21] Tsz Hon Yuen, Handong Cui, and Xiang Xie. Compact Zero-Knowledge Proofs for Threshold ECDSA with Trustless Setup. PKC 2021