
Efficient Online-friendly

Two-Party ECDSA

Haiyang Xue

Joint work with Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong Cui

To appear in ACM CCS 2021

Outline

 Two-Party ECDSA

Our Contribution

 Generic Two-Party ECDSA from a single MtA

 Technical overview

 Instantiations and implementation

 Paillier

 CL encryption

 OT

Motivation of distributed ECDSA

 ECDSA

 Digital Signature Standard using Elliptic Curve Cryptography

Widely deployed, such as Bitcoin etc.

 Stealing signing key means financial loss etc. (single-point of failure)

 Distributed （Threshold） ECDSA

 Protect the key by sharing among multiple parties

 Such that no fewer user (< 𝑡) could generate a valid ECDSA

How to address

single-points

of failure？

The threshold approach

Motivation of distributed ECDSA

 Threshold Cryptography Project at NIST

 Scope: standardization of threshold schemes

https://csrc.nist.gov/projects/threshold-cryptography； NIST.IR.8214A

https://csrc.nist.gov/projects/threshold-cryptography

Two-Party Signature (with 𝑡 = 2)

 Setup: The signing key is secret shared across 2

parties

 Interaction: The parties may collaborate, but their

key shares remain secret

 Correctness: sign a message in a threshold manner

 Security:

 Any 𝑃𝑖 can not forge signature alone, or learn anything on 𝑠𝑘

 Reduce to the security of original signature

𝑃1 𝑃2

𝑠𝑘1, 𝑚 𝑠𝑘2, 𝑚

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

Two-Party Signature (with 𝑡 = 2)

 Setup: The signing key is secret shared across 2 parties

 Interaction: The parties may collaborate, but their key

shares remain secret

 Correctness: sign a message in a threshold manner

 Security:

 Any 𝑃𝑖 can not forge signature alone, or learn anything on 𝑠𝑘

 Reduce to the security of original signature

𝑃1 𝑃2

𝑠𝑘1, 𝑚 𝑠𝑘2, 𝑚

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

 Efficient Two-Party Schnorr since 90s  Two-Party ECDSA is much more challenging

Challenge in Two-Party ECDSA: ECDSA

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

ECDSA Algorithm

 Sign(𝑥,𝑚)

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞; 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑥 ⋅ 𝑟) mod 𝑞

 Output (𝑟, 𝑠)

 Verify(𝑟, 𝑠)

 𝑟𝑥, 𝑟𝑦 = 𝑠−1[𝐻 𝑚 ⋅ 𝑃 + 𝑟 ⋅ 𝑄]

 𝑟 =? 𝑟𝑥

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Challenge in Two-Party ECDSA: Schnorr

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

Schnorr Algorithm

 Sign(𝑥,𝑚)

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞; 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘 + 𝑥 ⋅ 𝐻(𝑅|𝑚) mod 𝑞

 Output (𝑟, 𝑠)

 Verify(𝑟, 𝑠)

 𝑠 ⋅ 𝑃 =?𝑅 + 𝐻 𝑅 𝑚 ⋅ 𝑃

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Challenge in Two-Party ECDSA

Schnorr Algorithm

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞

 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘 + 𝑥 ⋅ 𝐻 𝑅 𝑚 mod 𝑞

 Output (𝑟, 𝑠)

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

ECDSA Algorithm

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞

 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑥 ⋅ 𝑟) mod 𝑞

 Output (𝑟, 𝑠)

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Challenge in Two-Party ECDSA

Schnorr Algorithm

 𝑅 = (𝑘1 + 𝑘2) ⋅ 𝑃

 𝑟 = 𝑟𝑥

 𝑠 = 𝑘1 + 𝑥1 ⋅ 𝐻 𝑅 𝑚 + 𝑘2 + 𝑥2 ⋅ 𝐻 𝑅 𝑚

 Output (𝑟, 𝑠)

ECDSA Algorithm

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞

 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑥 ⋅ 𝑟) mod 𝑞

 Output (𝑟, 𝑠)

Using additive share of 𝑥 and 𝑘
𝑥 = 𝑥1 + 𝑥2
𝑘 = 𝑘1 + 𝑘2

Compute 𝑘−1 and 𝑘−1𝑥 from shares of

𝑥 and 𝑘

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Challenge in Two-Party ECDSA

ECDSA Algorithm

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞

 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑥 ⋅ 𝑟) mod 𝑞

 Output (𝑟, 𝑠)

Compute 𝑘−1 and 𝑘−1𝑥 from shares of

𝑥 and 𝑘
Semi-honest security for any circuit

Goldreich-Micali-Wigderson (GMW)

Ben-Goldwasser-Wigderson(BGW)

etc.

Malicious security for any circuit

GMW compiler
Commitment

Zero-knowledge proof

Inefficient

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Previous works on Two-Party ECDSA

 Homomorphic Enc: CL

Lin

C17

DKLS

S&P18

 Homomorphic Enc: Paillier

 Oblivious Transfer (OT)

CCL+

C19

LN

CCS18

GG

CCS18
CGG+

CCS20

DKLS

S&P19

CCL+

PKC20
YXC

PKC21

Online

Message

dependent

Offline

Message

independent

Previous works on Two-Party ECDSA

 The offline phase (aka. pre-processing) is message

independent.

 We say the online phase of a two-party ECDSA is

optimal if it is non-interactive and its cost is

approximately a verification procedure.

 Two-party ECDSA is online-friendly if its online phase is

optimal.

𝑃1 𝑃2

𝑥1 𝑥2

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚

Online

Message

dependent

Offline

Message

independent

Previous works on Two-Party ECDSA

𝑃1 𝑃2

𝑥1 𝑥2

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚

Schemes Offline Online

[Lin17, CCL+19] Enc Dec

[LN18] 2*MtA MtA

[GG18, CCL+20,YXC21] 4*MtA Fast

[DKLS18] 2~3*MtA Optimal

[CGG+20, DKLS19] 4*MtA Optimal

Online

Message

dependent

Offline

Message

independent

Previous works on Two-Party ECDSA

𝑃1 𝑃2

𝑥1 𝑥2

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚

Schemes Offline Online

[Lin17, CCL+19] Enc Dec

[LN18] 2*MtA MtA

[GG18, CCL+20,YXC21] 4*MtA Fast

[DKLS18] 2~3*MtA Optimal

[CGG+20, DKLS19] 4*MtA Optimal

Multi-to-Add protocol

Paillier ~200ms ~6KB

CL ~1300ms ~1KB

OT cheap ~90KB

Costly

Paillier ~10ms ~3KB

CL ~200ms ~200B

Online

Message

dependent

Offline

Message

independent

Motivation: online-friendly scheme with one MtA

𝑃1 𝑃2

𝑥1 𝑥2

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚

Schemes Offline Online

[Lin17,CCL+19] Enc Dec

[LN18] 2*MtA MtA

[GG18, CCL+20,YCX21] 4*MtA Fast

[DKLS18] 2~3*MtA Optimal

[CGG+20, DKLS19] 4*MtA Optimal

Is it possible?? 1*MtA Optimal

Online

Message

dependent

Offline

Message

independent

Our contribution

𝑃1 𝑃2

𝑥1 𝑥2

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚

Schemes Offline Online

[Lin17,CCL+19] Enc Dec

[LN18] 2*MtA MtA

[GG18, CCL+20,YCX21] 4*MtA Fast

[DKLS18] 2~3*MtA Optimal

[CGG+20, DKLS19] 4*MtA Optimal

This work:

2ECDSA
1*MtA Optimal

Comparison

Technical Overview

Preliminary: Paillier and CL Encryption

 Additive Homomorphic Encryption Scheme:

Enc 𝑚1 +𝑚2 = Enc 𝑚1 ⊕Enc(𝑚2)

Enc 𝑎 ⋅ 𝑚 = Enc 𝑚 𝑎 = 𝑎⊙ Enc(𝑚)

Schemes over Message Space

Paillier 𝑍𝑁2 (𝑁 is RSA modulus) 𝑍𝑁

CL Encryption Class group 𝑍𝑞 (=#𝐺)

Paillier Encryption

 Let 𝑁 = 𝑝𝑞 be RSA modulus.

Secret key: 𝑝, 𝑞 public key : 𝑁

Enc 𝑁,𝑚 = 1 + N 𝑚 𝑟𝑁 𝑚𝑜𝑑 𝑁2

Enc 𝑁, (𝑚1+𝑚2) 𝑚𝑜𝑑 𝑁 = Enc 𝑁,𝑚1 ⊕Enc 𝑁,𝑚2

Preliminary: Multi-to-Add Protocol

Multi-to-Add Protocol (MtA)

𝑃1 𝑃2

𝑎 𝑏
MtA

𝛽𝛼

Such that 𝛼 + 𝛽 = 𝑎 ⋅ 𝑏 mod 𝑞

ECDSA

𝑠 = 𝑘−1(𝐻 𝑚 + 𝑥 ⋅ 𝑟)

 𝐻 𝑚 and 𝑟 is publicly known to both parties

 𝑥 is the secret key

 𝑘 is the nonce

Lin17 and CCL+19

𝑠 = 𝑘1
−1 ⋅ 𝑘2

−1 (𝐻 𝑚 + 𝑥1 ⋅ 𝑥2⋅ 𝑟)

Multiplicative share of 𝑘 = 𝑘1 ⋅ 𝑘2 and 𝑥 = 𝑥1 ⋅ 𝑥2

 Goal:

𝑠1

 If 𝑃1 has sent Enc 𝑥1 to 𝑃2 in the Key Generation phase

On receiving message 𝑚, 𝑃2 could compute

Enc 𝑠1 = Enc (𝑘2
−1 𝐻 𝑚 + 𝑥1 ⋅ 𝑥2⋅ 𝑟)

With decryption key, 𝑃1 could compute 𝑠1 and then 𝑠.

Lin17 and CCL+19

𝑠 = 𝑘1
−1 ⋅ 𝑘2

−1 (𝐻 𝑚 + 𝑥1 ⋅ 𝑥2⋅ 𝑟)

Multiplicative share of 𝑘 = 𝑘1 ⋅ 𝑘2 and 𝑥 = 𝑥1 ⋅ 𝑥2

 Goal:

𝑠1

 If 𝑃1 has sent Enc 𝑥1 to 𝑃2 in the Key Generation phase

On receiving message 𝑚, 𝑃2 could compute

Enc 𝑠1 = Enc (𝑘2
−1 𝐻 𝑚 + 𝑥1 ⋅ 𝑥2⋅ 𝑟)

With decryption key, 𝑃1 could compute 𝑠1 and then 𝑠.

However, decryption is required in the online phase;

Furthermore, non-standard assumption is required, such as Paillier-EC

DKLS18

𝑠 = 𝑘1
−1 ⋅ 𝑘2

−1 𝐻 𝑚 + 𝑘1
−1𝑥1 ⋅ 𝑘2

−1𝑥2⋅ 𝑟

Multiplicative share of 𝑘 = 𝑘1 ⋅ 𝑘2 and 𝑥 = 𝑥1 ⋅ 𝑥2

 Goal:

MtA MtA

𝛼1 𝛼2 𝛽1 𝛽2

𝑠 = (𝛼1 + 𝛼2)𝐻 𝑚 + (𝛽1 + 𝛽2) ⋅ 𝑟

 Two MtA are required.

LNR18 etc…

𝑠 = 𝑘1 + 𝑘2
−1[𝐻 𝑚 + (𝑥1+𝑥2) ⋅ 𝑟]

 Additive share of 𝑘 = 𝑘1 + 𝑘2 and 𝑥 = 𝑥1 + 𝑥2

 Goal:

2*MtA

𝛼1 𝛼2
𝑠 = 𝛼1 + 𝛼2 𝐻 𝑚 + (𝛼1 + 𝛼2)(𝑥1 + 𝑥2) ⋅ 𝑟

2*MtA

𝑠 = 𝛼1 + 𝛼2 𝐻 𝑚 + (𝛽1 + 𝛽2) ⋅ 𝑟

Step 1

Step 2

LNR18 etc…

𝑠 = 𝑘1 + 𝑘2
−1[𝐻 𝑚 + (𝑥1+𝑥2) ⋅ 𝑟]

 Additive share of 𝑘 = 𝑘1 + 𝑘2 and 𝑥 = 𝑥1 + 𝑥2

 Goal:

2*MtA

𝛼1 𝛼2
𝑠 = 𝛼1 + 𝛼2 𝐻 𝑚 + (𝛼1 + 𝛼2)(𝑥1 + 𝑥2) ⋅ 𝑟

 4 MtA are required.

2*MtA

𝑠 = 𝛼1 + 𝛼2 𝐻 𝑚 + (𝛽1 + 𝛽2) ⋅ 𝑟

Our Construction with one MtA

We start from share of 𝑘 = 𝑘1 ⋅ 𝑘2 and 𝑥 = 𝑥1 + 𝑥2

 Goal:

𝑠 = 𝑘1
−1 ⋅ 𝑘2

−1[𝐻 𝑚 + (𝑥1+𝑥2) ⋅ 𝑟]

If 𝑃1, 𝑃2 can corporately compute 𝑥1
′ , 𝑥2

′ such that

𝑥1+𝑥2= 𝑥1
′𝑘2 + 𝑥2

′

then

𝑠 = 𝑘1
−1 ⋅ [𝑘2

−1(𝐻 𝑚 + 𝑟𝑥2
′) + 𝑟𝑥1

′]

𝑃2 could compute by itself

Our Construction with one MtA

We start from share of 𝑘 = 𝑘1 ⋅ 𝑘2 and 𝑥 = 𝑥1 + 𝑥2

All we need: 𝑃1, 𝑃2 compute 𝑥1
′ , 𝑥2

′ such that

𝑥1+𝑥2= 𝑥1
′𝑘2 + 𝑥2

′

MtA

 Only one MtA is required

𝑡1 𝑡2

Then, 𝑥2
′ = 𝑥2 − 𝑡2 + (𝑥1 + 𝑡1)

One-time Padding

Instantiations

MtA from Paillier

 Enc is the Paillier encryption

 𝜋𝑃, 𝜋𝐵 , 𝜋𝐴 is the zero-knowledge proof for the correctness generation of 𝑁, 𝑐𝐵 , 𝑐𝐴 respectively

Paillier-based Two-Party ECDSA

MtA from CL encryption

 Enc𝑐𝑙 is the CL encryption over class group

 𝜋𝐶𝐿 is the zero-knowledge proof for the correctness generation of 𝑐𝐵 respectively

CL-based Two-Party ECDSA

MtA from Oblivious Transfer (OT)

OT
𝑚0, 𝑚1 𝑏 ∈ {0, 1}

𝑚𝑏

OT is a fundamental primitive of multiparty computation (MPC).

MtA from Oblivious Transfer (OT)

OT
𝑚0, 𝑚1 𝑏 ∈ {0, 1}

𝑚𝑏

MtA from Oblivious Transfer (OT)

P1 (𝑏 ≔ 𝑏0, 𝑏1, … , 𝑏𝑛−1)P2 (𝑎)

Randomly pick 𝑠0, … , 𝑠𝑛−1
For each i, define 𝑡𝑖

0 = 2𝑖𝑎 + 𝑠𝑖; 𝑡𝑖
1 = 𝑠𝑖

OT

(𝑖-th invocation)

𝑏𝑖𝑡𝑖
0 𝑡𝑖

1

𝑣𝑖 ≔ 𝑡𝑖
𝑏𝑖

𝛽 = ∑𝑣𝑖
𝛼 = −∑𝑠𝑖

Note: 𝛼 + 𝛽 = 𝑎𝑏

OT

MtAs from HE vs OT

OT-based MtA Paillier/CL-based MtA

High communication Low communication

Low computation High computation

No zero-knowledge proof zero-knowledge proof

No extra assumption May need extra assumptions

Comparison in one figure

offline Cost

Overall Cost

online Cost

Our work

Conclusion

We propose a online-friendly two-party ECDSA such that

 its online computation is extremely fast

and its offline phase just need a single execution of MtA

 Our scheme could be instantiated with Paillier/CL encryption and OT

Following works: 𝑡-out-of-𝑛 ECDSA

 This work only supports two-party, i.e., 2-out-of-𝑛.

 How about 𝑡-out-of-𝑛 ECDSA?

The threshold approach

One more thing: SM2

Public parameters: 𝐺 =< 𝑃 > with prime order 𝑞

SM2 Algorithm

 Sign(𝑥,𝑚)

 𝑅 = 𝑘 ⋅ 𝑃 where 𝑘 ← 𝑍𝑞; 𝑟 = 𝑟𝑥 where 𝑅 = (𝑟𝑥, 𝑟𝑦)

 𝑠 = 𝑥−1[𝑘 + 𝑟 + 𝐻 𝑚] mod 𝑞

 Output (𝑟, 𝑠)

 Verify(𝑟, 𝑠)

 𝑠 ⋅ 𝑄 =?𝑅 + 𝑟 ⋅ 𝑃 + 𝐻(𝑚) ⋅ 𝑃

Secret signing key: 𝑥 ← 𝑍𝑞 Public key: 𝑄 = 𝑥 ⋅ 𝑃

Thanks

Q & A

Reference

 [CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.

2019. Two-party ECDSA from hash proof systems and efficient instantiations. CRYPTO 2019

 [CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.

2020. Bandwidth-efficient threshold ECDSA. PKC 2020

 [CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC

Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts. ACM CCS 2020

 [DKLS18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party threshold

ECDSA from ECDSA assumptions. IEEE S&P 2018

 [DKLS19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat.Threshold ECDSA from ECDSA

assumptions: the multiparty case. IEEE S&P 2019

 [GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless

setup. ACM CCS 2018

 [Lin17] Yehuda Lindell. Fast secure two-party ECDSA signing. CRYPTO 2017

 [LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key

generation and applications to cryptocurrency custody. ACM CCS 2018

 [YCX21] Tsz Hon Yuen, Handong Cui, and Xiang Xie. Compact Zero-Knowledge Proofs for Threshold

ECDSA with Trustless Setup. PKC 2021

