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Abstract. In STOC 2008, Peikert and Waters introduced a powerful
primitive called lossy trapdoor functions (LTFs). In a nutshell, LTFs are
functions that behave in one of two modes. In the normal mode, func-
tions are injective and invertible with a trapdoor. In the lossy mode,
functions statistically lose information about their inputs. Moreover, the
two modes are computationally indistinguishable. In this work, we put
forward a relaxation of LTFs, namely, regularly lossy functions (RLFs).
Compared to LTFs, the functions in the normal mode are not required
to be efficiently invertible or even unnecessary to be injective. Instead,
they could also be lossy, but in a regular manner. We also put forward
richer abstractions of RLFs, namely all-but-one regularly lossy functions
(ABO-RLFs).

We show that (ABO)-RLFs admit efficient constructions from both a
variety of number-theoretic assumptions and hash proof system (HPS)
for subset membership problems satisfying natural algebraic proper-
ties. Thanks to the relaxations on functionality, the constructions enjoy
shorter key size and better computational efficiency than that of (ABO)-
LTFs.

We demonstrate the applications of (ABO)-RLFs in leakage-resilient
cryptography.

– As a special case of RLFs, lossy functions imply leakage-resilient
injective one-way functions with optimal leakage rate 1 − o(1).

– ABO-RLFs immediately imply leakage-resilient message authentica-
tion code (MAC) with optimal leakage rate 1 − o(1), though in a
weak sense.

– ABO-RLFs together with HPS give rise to leakage-resilient chosen-
ciphertext (CCA) secure key encapsulation mechanisms (KEM) (this
approach extends naturally to the identity-based setting). Combin-
ing the construction of ABO-RLFs from HPS, this gives the first
leakage-resilient CCA-secure public-key encryption (PKE) with opti-
mal leakage rate based solely on HPS, and thus goes beyond the
barrier posed by Dodis et al. (Asiacrypt 2010).
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1 Introduction

In STOC 2008, Peikert and Waters [PW08] introduced a powerful primitive
called lossy trapdoor function (LTF). Informally, LTF is a collection of functions
F = {fek} whose evaluation key (i.e., function index or code) is created in one of
two modes. One is injective (i.e., normal) mode: given a suitable trapdoor td for
ek, the entire input x can be efficiently recovered from fek(x). The other is lossy
mode: fek statistically loses a significant amount of information about its input.
Moreover, the two modes are computationally indistinguishable: given just ek, no
efficient adversary can tell whether fek is injective or lossy. They also introduced
a richer abstraction called all-but-one lossy trapdoor functions (ABO-LTFs).
A collection of ABO-LTFs is associated with a set B called branches. The key
generation algorithm takes a given branch b∗ ∈ B as an extra parameter, and
outputs an evaluation key ek and a trapdoor td. The function fek,b(·) is injective
and invertible with td for any branch b �= b∗, while the function fek,b∗(·) is lossy.
Moreover, the lossy branch b∗ is computationally hidden by ek.

Using LTFs and ABO-LTFs, Peikert and Waters [PW08] develop new
approaches for constructing several important cryptographic tools, such as injec-
tive TDFs, collision-resistant hash functions (CRHFs), oblivious transfer and
CCA-secure PKE.

1.1 Related Work

Since the initial work of [PW08], there has been much additional work on LTFs
and related concepts.

One direction of research is to find additional realizations of LTFs. Boyen
and Waters [BW10] gave a technique to shrink the public key of matrix con-
struction of [PW08] with the help of pairing. Rosen and Segev [RS09] and
Boldyreva et al. [BFO08] independently described simple, compact construc-
tions of LTFs and ABO-LTFs under the decisional composite residuosity (DCR)
assumption. Freeman et al. [FGK+13] provided more constructions of LTFs from
the quadratic residuosity (QR) and d-linear assumptions. Kiltz et al. [KOS17]
and Xue et al. [XLL+13] gave constructions of LTFs based on factoring assump-
tions. Hemenway and Ostrovsky [HO12] gave a construction of LTFs based on
the extended decisional Diffie-Hellman (eDDH) assumption, which generalizes
the DDH, QR and DCR assumption. They also showed a generic construction
of LTFs from homomorphic smooth HPS. Wee [Wee12] presented an alternative
generic construction of LTFs from dual HPS.

Another direction of research is to explore variations and more applications.
Rosen and Segev [RS09] and Kiltz et al. [KMO10] showed LTFs imply correlated-
product TDFs and adaptive TDFs respectively. Boldyreva et al. [BFO08] con-
structed CCA-secure deterministic encryption based on LTFs and ABO-LTFs.
Hemenway et al. [HLOV11] generalized ABO-LTFs to all-but-N lossy trapdoor
functions (ABN-LTFs) that have N lossy branches. Hofheinz [Hof12] further gen-
eralized ABN-LTFs to all-but-many (ABM) LTFs in which the number of lossy
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branches is not bounded by any polynomial. Recently, Boyen and Li [BL17] real-
ized ABM LTFs based on the learning with errors assumptions. So far, ABM-
LTFs have shown their usefulness in constructing PKE with strong security
properties including selective opening security [Hof12] and key-dependent mes-
sage security [Hof13]. Mol and Yilek [MY10] constructed a CCA-secure PKE
from any slightly lossy trapdoor functions that lose only a noticeable fraction
of a bit. On the contrary, Zhandry [Zha16] introduced extremely lossy func-
tions (whose functions in the lossy mode only have polynomial-sized image),
and demonstrated extremely lossiness is useful for instantiating random oracles
in several settings.

1.2 Motivations

Due to the strong requirement for the normal mode (injective and efficiently
invertible with trapdoor), the concrete constructions of (ABO)-LTFs are typi-
cally not efficient in terms of the size of evaluation key and complexity of evalu-
ation. The generic constructions of (ABO)-LTFs require advanced property for
the basing primitives, such as homomorphic and invertible properties.

In all the known applications of LTFs, the normal mode is used to fulfill
functionality, while the lossy mode is used to establish security. However, in many
scenarios we do not require the full power of LTFs. As observed by Peikert and
Waters [PW08, Sect. 3.4], some applications (such as injective OWFs, CRHFs)
do not require a trapdoor, but only indistinguishability between normal mode and
lossy mode. Thereby, they conjectured “realizing the weaker notion of lossy (non-
trapdoor) functions (LFs) could be achieved more simply or efficiently than the
full notion of LTFs”, and left the investigation of this question as an interesting
problem.

A central goal in cryptography is to base cryptosystems on primitives that
are as week as possible. With the question raised by Peikert and Waters [PW08]
in mind, we ask the following questions:

How to realize LFs efficiently? Are there any other applications of LFs?
Can we further weaken the notion of LFs while still being useful?

1.3 Our Contributions

We answer the above questions affirmatively. An overview of our contributions
is as below.

1.4 Regularly Lossy Functions and Extensions

As discussed above, when building cryptographic protocols the normal mode of
LTF is used to fulfill functionality. For some applications that invertible property
for the normal mode is overkilled, the injective property may also be unnecessary.
This suggests that we may further relax the notion of LFs.
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We introduce a new primitive called regularly lossy functions (RLFs), which
is a public function fek (the evaluation key ek serves as the function index) that
is created to behave in one of two modes. In the normal mode, the function fek

could be lossy, but should lose regularly (we will formally define this later). The
intuition is that when the input x has high min-entropy, so does fek(x). In the
lossy mode, the function fek statistically loses a significant amount information
about its input x, i.e., the average min-entropy of x|fek(x) is high. Finally, the
two modes are indistinguishable: no efficient adversary can tell whether fek is in
normal mode or lossy mode.

In line of the above intuition, we can use image size to capture the lossy
mode same as LTFs [PW08], but not for the normal mode. This is because
image size is a global characterization for a function, which suffices to give the
lower bound of the average min-entropy of x|fek(x) by applying the chain rule
for min-entropy [DORS08], but is insufficient to give the lower bound of the
min-entropy of fek(x). For instance, when the function is highly unstructured,
it is possible that the image size of fek is slightly smaller the domain size, but
the min-entropy fek(x) is much smaller than that of x. To address this subtle
issue, we choose a local characterization of function named regularity to capture
the normal mode. In the normal mode, the function fek is ν-regular, i.e., each
image has at most ν preimages under fek. With this requirement, the (average)
min-entropy of f(x) decreases at most log ν compared to that of x (by applying
Lemma 1 we develop in Sect. 2.2).

Clearly, our notion of RLFs differs from LFs only at the normal mode, whose
functions are not required to be injective but could be flexibly lossy from injective
to significantly lossy, subjected to the parameter choices of concrete applications.
The only constraint is they should lose in a regular way.

To admit more applications, we introduce a richer abstraction called ABO-
RLFs, analogously to the extension of LTFs to ABO-LTFs. Briefly, an ABO
collection is associated with a branch set B. The generation algorithm of ABO-
RLF takes an extra parameter b∗ ∈ B, and outputs an evaluation key such that
fek,b is regular for any branch b �= b∗ but is lossy when b = b∗. Moreover, the
lossy branch is (computationally) hidden by ek.

1.5 Efficient Constructions of ABO-RLFs

Existing constructions of (ABO)-LTFs are less efficient due to their strong
requirement for the normal mode. In contrast, RLFs require nothing but the
intrinsic regularity of functions for the normal mode. Such weakening admits
much more efficient constructions from both number-theoretic assumptions and
HPS.

First, we mainly follow the matrix approach due to [PW08] to give a DDH-
based ABO-RLFs, in which the evaluation key is specified by an n × m matrix
over groups. The efficiency improvements of our construction comes from two
aspects: (1) since we do not require efficiently inversion, the input x can be
treated as an n-dimensional vector of elements from some large field (say Zp)
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rather than a binary string over {0, 1}n; (2) since we even do not require injectiv-
ity, m could be set smaller than n and thus the matrix size shrinks noticeably.
Our DDH-based ABP-RLFs can be naturally extended to base on the eDDH
assumption.

As to generic constructions, we first give a construction of ABO-RLF from
any HPS for subset membership problems (SMPs). The construction proceeds
via two steps: (1) build LF from any HPS following the approach of building LTF
from dual HPS [Wee12]; (2) amplify the obtained RLF to ABO-RLF with branch
set {0, 1}�. However, this construction is inefficient in that its second step invokes
� individual copies of RLF and involves some degradation in lossiness. Towards a
direct and efficient construction, we require the SMPs to satisfy natural algebra
properties, namely L is a subgroup of X and the quotient group H = X/L is
a cyclic group of order p. By exploiting this properties, we manage to give an
efficient ABO-RLF with branch set B = Zp directly from HPS.

1.6 Applications in Leakage-Resilient Cryptography

On the surface, non-injective function without a trapdoor do not appear pretty
useful, since many appealing applications of standard LTF require a trapdoor
(e.g., public-key encryption) or at least injectivity (e.g., CRHFs) for the normal
mode. Indeed, RLF does not suffice for most of the applications outlined above.
Nevertheless, we show that this simple notion on its own or in conjunction with
other tools can in fact quite useful in leakage-resilient cryptography.

Traditional security models assume complete privacy of secret keys. However,
in real systems the adversary might learn partial information about secret keys
by launching various “key leakage attacks” via side channels, which make this
idealized assumption false in practice. This fact lead to the design of leakage-
resilient cryptography, which spreads to stream ciphers, block ciphers, digital
signatures, public-key encryption, identity-based encryption.

There are several models of key leakage-resilience in the literature, mainly
differing in their specifications of what and how many information can be leaked
to the adversary. In this work we will focus on a simple yet general model,
called bounded-leakage model. In this model, the adversary can learn arbitrary
information about the secret key, subjected to the restriction that the total
number of leakage is bounded by some leakage bound �(λ), where λ is the security
parameter. The leakage rate is defined as the ratio of �(λ) to the secret key size
s(λ), i.e., �(λ)/s(λ). Clearly, 1 − o(1) is the optimal leakage rate in the bounded
leakage model.

In this work, we demonstrate the utility of RLFs (including their special case
– LFs) by exploring their applications in leakage-resilient cryptography.

Leakage-Resilient OWFs. A function is said to be �-leakage-resilient one-way
if one-wayness maintains even the attacker may obtain at most �-bits leakage
about the preimage.
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It was shown in [ADW09b,DHLW10,Kom16] (and implicitly in [ADW09a,
KV09]) that any weak universal one-way hash function (UOWHF)1 from {0, 1}n

to {0, 1}m automatically provides �-leakage-resilient one-wayness, where � ≤
n − m − ω(λ). The shortcoming of this construction is the resulting LR OWFs
are inherently compressing, and the leakage bound is dependent on the image
size. As a consequence, in some applications one has to make a trade-off between
image size and leakage bound.

In this work, we give an alternative construction based on LF. The insight is
that the implication of LF ⇒ injective OWF [PW08] also holds in the leakage
setting. More precisely, we show that the functions in the injective mode of LFs
make up a collection of �-leakage-resilient injective OWFs. The leakage bound
is � ≤ n − τ − ω(λ), where n is the length of inputs and τ is the logarithm of
image size for the lossy mode. Both of our construction based of LF and the
construction based on UOWHF achieves optimal leakage rate with appropriate
parameter choice. The advantage of our construction is that the leakage bound
is independent of the image size2, which is more applicable in practice. To the
best of our knowledge, our construction appears to be the first leakage-resilient
injective OWF with optimal leakage rate.

Leakage-Resilient MAC. Hazay et al. [HLAWW13] constructed a leakage-
resilient MAC from standard PRF. Though their construction only requires
minimum assumption (OWFs), the leakage rate log λ/s(λ) is poor. Constructing
leakage-resilient MAC under general assmption with higher leakage rate was left
as an open problem [HLAWW13].

In this work, we make a progress towards this problem. We construct a
leakage-resilient MAC with optimal leakage rate from ABO-RLFs, though in a
weaker sense. To convert a ABO-RLF to a MAC, the key generation algorithm
generates an evaluation key ek as public parameter, then chooses a random x
from input space as the secret key; the tag algorithm treats message m as branch
and evaluate t ← fek,m(x); the verification algorithm is canonical, namely re-
computes the tag and checks for equality.

The resulting MAC turns out to be leakage-resilient strongly unforgeable,
though in a weaker sense: the attacker only makes one tagging query and declares
the query at the very beginning. The security argument leverages on the power of
lose information. Upon the attacker submitting its target query m∗, the reduc-
tion generates ek with m∗ as the lossy branch and returns t∗ ← fek,m∗(x).
Observe that fek,m∗ is a lossy function, thus the secret key x still retains suf-
ficient min-entropy even after revealing t∗ and bounded leakage. For any forge
(m, t), we must have m �= m∗ since the MAC is unique. Besides, fek,m is a
ν-regular function whenever m �= m∗. In this case, the (average) min-entropy
of t = fek,m(x) decreases at most log ν compared to that of x. Therefore, t is
unpredictable. The leakage rate could achieve 1 − o(1) under proper parameter
choice.

1 This is sometimes called second preimage resistant functions.
2 The leakage bound only subjects to the image size of functions in the lossy mode,

which will not be used in real construction.
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Leakage-Resilient PKE. A PKE is said to be �-leakage-resilient if semantic
security maintains even if the attacker can obtain at most �-bits leakage about
the secret key.

Akavia et al. [AGV09] first formalized the notion of leakage-resilient chosen-
plaintext security (LR CPA) in the bounded-leakage model. Since then, many
existing PKE schemes [Reg05,GPV08,BHHO08] have been proved secure in the
bounded-leakage model. Later Naor and Segev [NS09] generalized the main ideas
behind these constructions to by giving a generic construction of LR CPA-secure
PKE schemes from universal1 hash proof system (HPS) [CS02]. Moreover, they
also show how to achieve LR CCA security by either: (1) applying the Naor-
Yung paradigm to obtain impractical PKE schemes with leakage-rate 1 − o(1)
or (2) combining universal2 HPS to obtain practical PKE schemes (variants
of the Cramer-Shoup cryptosystems) with leakage-rate 1/6 − o(1). Later, Liu
et al. [LWZ13] proposed a new variant of the Cramer-Shoup cryptosystems which
is LR CCA-secure with leakage-rate 1/4 − o(1). Dodis et al. [DHLW10] realized
that the HPS approach to building LR CCA-secure PKE seems to be inherently
limited to leakage-rates below 1/2: because the secret-key consists of two com-
ponents (sk1 of universal1 HPS for decrypting ciphertext and sk2 of universal2
HPS for verifying the well-formedness of the ciphertext) and the proofs break
down if either of the components is individually leaked in its entirety.3 Later, Qin
and Liu [QL13,QL14] bypassed the bound by replacing the universal2 HPS in
the HPS approach [NS09] with a new primitive called one-time lossy filters (OT-
LFs). By delicate instantiations of universal1 HPS and OT-LF, they obtained
LR CCA-secure PKE schemes with leakage rate 1 − o(1). However, if OT-LF is
implied by HPS is unknown. The problem of whether we can build LR CCA-
secure PKE with optimal leakage-rate based on solely HPS is still open.

In this work, we resolve this problem by building LR CCA-secure PKE with
leakage rate 1 − o(1) based solely on HPS. This goes beyond previous believed
bound conjectured by Dodis et al. [DHLW10]. Our starting point is the work of
Qin and Liu [QL13]. It is well-known that key encapsulation mechanism (KEM)
is more preferable than PKE from both theoretic and practice interest, thus we
focus on the construction of leakage-resilient KEM.

Observe that in the setting of PKE the challenge ciphertext depends on
attacker’s choice of target messages, whereas in the setting of KEM the challenge
ciphertext is entirely determined by the challenger in the setting of KEM. Such
feature allows us to replace OT-LFs with all-but-one lossy functions (ABO-LFs),
which saves at least a chameleon hash for the KEM construction.4 Moreover, we

3 Kiltz et al. [KPSY09] showed that CCA-secure PKE can be constructed from a
universal2 HPS with an authenticated one-time secure symmetric encryption, while
universal2 HPS can be generically obtained from universal1 HPS via 4-wise inde-
pendent hash function. At a first glance, their construction can be easily augmented
to be leakage-resilient CCA-secure by applying randomness extractor to the pro-
jective hash. However, such augment could be very subtle in that the adding of a
random seed may render the overall ciphertext easily malleable, and thus cannot be
CCA-secure.

4 As shown in [QL13], OT-LFs can be build from ABO-LFs and chameleon hash.
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show that ABO-LFs can be relaxed to ABO-RLFs. As we show in Sect. 5, ABO-
RLFs can be efficiently constructed from any HPS for subgroup membership
problem with natural algebraic properties. Taken together, the secret key in
our approach consists of just one component for verifying the well-formedness
of the ciphertext and for decrypting it simultaneously. Therefore, the leakage
rate of our construction can go beyond the limitation of 1/2, being subject to
the leakage tolerance of the underlying universal1 HPS. For instance, applying
the DDH-based universal1 HPS from [QL13], we obtain a LR CCA-secure KEM
with leakage rate 1/2−o(1); applying the universal1 HPS from refined subgroup
indistinguishability problem [QL14], we obtain a LR CCA-secure KEM with
leakage rate 1 − o(1).

Note that a KEM can be bootstrapped to a PKE by combining a data encap-
sulation mechanism (DEM) with appropriate security properties [CS02,KD04,
HK07], and the composition applies well in the leakage-resilient setting (without
requiring DEM to be leakage-resilient). Taken together, our KEM construction
indicates that LR-CCA secure PKE with optimal leakage ratio are achievable
based on solely HPS.

2 Preliminaries

2.1 Basic Notations

For a distribution or random variable X, we write x
R←− X to denote the operation

of sampling a random x according to X. For a set X, we use x
R←− X to denote

the operation of sampling x uniformly at random from X, and use |X| to denote
its size. We use UX to denote the uniform distribution over X.

We denote λ ∈ N as the security parameter. Unless described otherwise, all
quantities are implicit functions of λ, and all cryptographic algorithms (including
the adversary) take λ as an input. We say that a quantity is negligible, written
negl(λ), if it vanishes faster than the inverse of any polynomial in λ. A proba-
bilistic polynomial time (PPT) algorithm is a randomized algorithm that runs
in time poly(λ). If A is a randomized algorithm, we write z ← A(x1, . . . , xn; r)
to indicate that A outputs z on inputs (x1, . . . , xn) and random coins r. For
notational clarity we usually omit r and write z ← A(x1, . . . , xn).

Due to space limit, we defer the definition of standard cryptographic primi-
tives and information background to the full version.

2.2 Regular Functions

A function f is injective (akin, 1-to-1) if every image has one and only one
preimage. Following [BHSV98], we measure the amount of “non-injectivity” by
looking at the maximum preimage size. Let ν be a quantity of security parameter
λ. We say that f is ν-to-1 (or ν-approximately-regular) if ν bounds the maximum
preimage size of f : any image has at most ν preimages under f . Particularly, if
every image has the same number (say ν) of preimages, we say f is ν-regular.
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We develop the following useful lemma which establishes the relation between
the min-entropy of X and f(X).

Lemma 1. Let f : D → R is a ν-to-1 function and X is a random variable
over domain D. Then we have:

H∞(f(X)) ≥ H∞(X) − log ν

Proof. Let x∗ be the value in the domain that maximizes Pr[X = x] and y∗

be the value in the range that maximizes Pr[f(X) = y]. Since every image
has at most ν preimages, it follows that Pr[f(X) = y∗] =

∑
x∈f−1(y∗) Pr[X =

x] ≤ ν · Pr[X = x∗]. According to the definition of min-entropy, the lemma
immediately follows. The equality achieves when f is ν-regular and X follows
the uniform distribution. Moreover, the above relation applies to average min-
entropy as well. Suppose X is correlated to another random variable Y , we have
H̃∞(f(X)|Y ) ≥ H̃∞(X|Y ) − log ν. 	


Hereafter, we do not distinguish ν-approximately-regular and ν-regular. For
ease of presentation, we refer to them collectively as ν-regular.

3 Regularly Lossy Functions and Extensions

3.1 Regularly Lossy Functions

Now, we define the notion of RLFs. Suppose the size of domain is 2n(λ) where
n(λ) = poly(λ). Define ν(λ) ≤ 2n(λ) to represent the non-injectivity of the
collection, and 2τ (λ) ≤ 2n(λ) to represent the image size of the collection. For
all these quantities, we often omit the dependence on the security parameter λ.

A collection of (ν, τ)-RLFs is given by four polynomial time algorithms sat-
isfying the following properties:

– Setup(λ): on input λ, output public parameter pp which includes the descrip-
tions of evaluation key space EK, domain X and range Y .

– GenNormal(pp): on input pp, output an evaluation key ek. fek(·) is a ν-regular
function from X to Y .

– GenLossy(pp): on input pp, output an evaluation key ek. fek(·) is a lossy
function from X to Y whose image has size at most 2τ . The lossiness is
defined as n − τ .

– Eval(ek, x): on input ek and an element x ∈ X, output y ← fek(x).

Hard to distinguish normal from lossy. For all pp ← Setup(λ), the outputs
of GenNormal(pp) and GenLossy(pp) are computationally indistinguishable.

Remark 1. Our notion of RLFs is a generalization of LFs. In the case ν = 1,
RLFs obviously boil down to LFs.
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3.2 All-But-One Regularly Lossy Functions

To admit more applications, it is convenient to work with a richer notion named
ABO-RLFs. The extension is an analog of LTFs to ABO-LTFs in [PW08]. In
an ABO collection, each function has an extra input called its branch. All of the
branches are regular functions, except for one branch is lossy. The lossy branch
is an auxiliary input to the evaluation key generation algorithm, and its value is
hidden (computationally) by the resulting evaluation key.

We retain the same notation for n, ν, τ as above, and let B be the set of
branches. A collection of (ν, τ)-ABO-RLFs consists of three polynomial time
algorithms satisfying the following properties:

– Setup(λ): on input λ, output public parameter pp which specifies of evaluation
key space EK, branch set B, domain X and range Y .

– Gen(pp, b∗): on input pp and any b∗ ∈ B, output an evaluation key ek. For
any b �= b∗, fek,b(·) is a ν-regular function from X to Y , while fek,b∗(·) is a
lossy function from X to Y whose image has size at most 2τ .

– Eval(ek, b, x): on input an evaluation key ek and a branch b ∈ B and an
element x ∈ X, output y ← fek,b(x).

Hidden lossy branch. For any b∗
0, b

∗
1 ∈ B × B, the output ek0 of Gen(pp, b∗

0)
and the output ek1 of Gen(pp, b∗

1) are computationally indistinguishable.
Peikert and Waters [PW08] showed that LTFs and ABO-LTFs are equivalent

for appropriate choices of parameters and degree of lossiness. It is straightforward
to verify the equivalence also holds in our regularly lossy setting. We list the
results as below for completeness. The security proofs are omitted here since
they follow readily from [PW08].

Lemma 2. There exists a collection of (ν, τ)-ABO-RLFs having exactly two
branches if and only if there exists a collection of (ν, τ)-RLFs.

4 Concrete Construction of ABO-RLFs

In this section, we build ABO-RLFs from the DDH assumption. Our construction
mainly follow the matrix approach due to [PW08], but with important refinement
for better efficiency.

We first recall the algorithm named GenConceal for generating a pseudoran-
dom concealer matrix that enjoys certain useful linearity properties from [PW08].
In a nutshell, GenConceal takes as input positive integers n and m (where n ≥ m),
outputs a n×m matrix G

n×m, in which the matrix is pseudorandom and all the
columns lie in a one-dimensional subspace. More precisely, it works as follows:

– Choose r = (r1, . . . , rn) ← Z
n
p and s = (s1, . . . , sm) ← Z

m
p uniformly at

random.
– Let V = r ⊗ s = rts ∈ Z

n×m
p be the outer product of r and s.

– Output C = gV ∈ G
n×m as the concealer matrix.
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Lemma 3 ([PW08]). Let n,m = poly(λ). Under the DDH assumption, the con-
ceal matrix C = gV ← GenConceal(n,m) is pseudorandom over G

n×m.

Our construction of ABO-RLFs from the DDH assumption is as below.

– Setup(λ): run (G, g, p) ← GroupGen(λ), output pp = (G, g, p) and B = Zp.
– Gen(pp, b∗): on input pp and b∗ ∈ Zp, invoke GenConceal(n,m) to generate

C = gV ∈ G
n×m, output ek = gY = gV−b∗I′

, where I′ ∈ Z
n×m
p , i.e., the ith

column is the standard basis vector ei ∈ Z
n
p for i ≤ n, and the rest columns

are zero vectors.
– Eval(ek, b,x): on input evaluation key ek = gY, a branch b ∈ Zp and an

element x ∈ Z
n
p , output y = gx(Y+bI′) = gx(V+(b−b∗)I′) ∈ G

m.

Lemma 4. Under the DDH assumption, the above construction is a collection
of (pn−m, log p)-ABO-RLFs for n > 1.

Proof. For any b �= b∗, (V, b) determines pn−m-to-1 function because the rank
of (Y + bI′) is m and the size of the solution space for every y ∈ G

m is pn−m.
For b = b∗, every output y is of the form gr′s, where r′ = xrt ∈ Zp. Because
s is fixed by the function index V, there are at most p distinct outputs of any
particular function determined by (V, b∗). The lossiness is (n − 1) log p.

The hidden lossy branch property (under the DDH assumption) follows by
an elementary reduction: for any branch b∗ ∈ Zp the output of Gen(λ, b∗) is
computationally indistinguishable from uniform over G

n×m.

Remark 2. The parameter n controls the size of domain, while the parameter
m allows us to manipulate the regularity for the ABO branches in a flexible
manner. When m = n the above construction becomes the standard ABO lossy
functions because the ABO branches are injective.

In the DDH-based ABO-LTF construction [PW08], the input space is
restricted to {0, 1}n and m must be larger than n to ensure invertible prop-
erty. In our construction, we do not require invertible property. Therefore, the
input space dramatically extends from {0, 1}n to Z

n
p without expanding the con-

ceal matrix. Moreover, when injective property is not necessary, we could further
shrink the matrix by setting m smaller than n. In the matrix-based construc-
tion, both the size of evaluation key and the computation cost of evaluation are
dominated by n and m. Therefore, compared to the DDH-based ABO-LTFs, our
DDH-based ABO-RLFs allows much larger inputs and much better efficiency.
The flexible choice of m gives rise to more compact evaluation key.

Following a similar approach due to Hemenway and Ostrovsky [HO12],
the above DDH-based construction naturally extends to construction based
on the eDDH assumption [HO12], which generalized the DDH, QR and DQR
assumptions.

5 Generic Construction of ABO-RLFs

In this section, we focus on generic construction of ABO-RLFs.
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5.1 Construction from HPS for Subset Membership Problem

Lemma 2 indicates that ABO-RLF is implied by RLF. Thus, the task of con-
structing ABO-RLF can be reduced to seeking generic construction of RLF.

Wee [Wee12] introduced the notion of dual HPS. As with universal HPS,
dual HPS also centers around a family of hash function {Λsk} indexed by secret
key sk and whose input x comes from some “hard” language. As before, dual
HPS requires that for x ∈ L (YES instance), the hash value Λsk(x) is completely
determined by x and pk = α(sk). On the other hand, for x /∈ L (NO instance),
dual HPS requires invertibility – that α(sk) and Λsk(x) jointly determine sk,
and there exists an inversion trapdoor td that enables us to efficiently recover
sk given (α(sk), Λsk(x))5 along with x. Wee showed an elegant construction of
LTF from dual HPS, which is depicted in Eq. (1) as below.

fx(sk) = α(sk)||Λx(sk) (1)

In Wee’s construction, instance x serves as the evaluation key and secret key
sk acts as input. The injective mode (when x /∈ L) follows from the invertible
property of dual HPS, whereas the lossy mode (when x ∈ L) follows from the
projective property of Λsk(·). Moreover, the indistinguishability of injective and
lossy mode follows from the hardness of subset membership problem.

Interestingly, we can build RLF from any HPS via the same construction
shown as above. Since RLF is much weaker then LTF, we only need the pro-
jective property of HPS; any additional properties such as smooth, universal or
invertible properties are unnecessary. Formally, let (X,L,W,R, PK, SK,α,Π,Λ)
be public parameter of HPS. Assume fx(sk) = α(sk)||Λx(sk) is a ν-to-1 function
from SK to Π for any x /∈ L.6 We have the following lemma.

Lemma 5. Under the subset membership assumption, Eq. (1) yields a collection
of (ν, log |Img(α)|)-RLFs.

Proof. Correctness for the normal mode follows readily from the fact that fx(·) is
a ν-to-1 function. Lossiness for the lossy mode follows readily from the projective
property, which implies that for any x ∈ L, Img(fx) = Img(α). The indistin-
guishability between normal mode and lossy mode can be directly reduced to
the subset membership assumption. 	


Putting all the above together, we can generically construct ABO-RLF from
any HPS. The construction proceeds via two steps: (1) build RLF from any
HPS; (2) amplify the obtained RLF to ABO-RLF with branch set {0, 1}�. How-
ever, this generic construction is not efficient in that its second step invokes �
individual copies of RLF and involves some degradation in lossiness.

5 Following the treatment of [Wee12], we will write Λsk(x) as Λx(sk) occasionally.
6 The regularity of α gives an upper bound of ν.
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5.2 Efficient Construction from HPS for Algebraic Subset
Membership Problem

The above construction serves as a proof of concept that one can generically
build ABO-RLF from any HPS. It is intriguing to know if there exists more
efficient construction.

Our idea is to exploit more algebra property of the associated subset mem-
bership problem. More precisely, we choose to work with group-oriented SMPs,
which we call algebraic subgroup membership problem.

Algebraic subset membership problems. We first formally introduce a new
class of cryptographic indistinguishability problem called algebraic subset mem-
bership problems (ASMPs), which is a special type of SMPs (cf. definition in
Sect. 8) with the following requirements.

1. X forms a finite Abelian group, L forms a subgroup of X.
2. The quotient group H = X/L is cyclic with order p = |X|/|L|.
With the above algebraic properties, we have the following two useful facts:

– Let a = aL for some a ∈ X\L be a generator of H, then the co-sets
(aL, 2aL, . . . , (p − 1)aL, paL = L) constitute a partition of X.

– For each x ∈ L, ia + x ∈ X\L for 1 ≤ i < p.

The hardness of ASMPs is same as that of SMPs, which stipulates the uni-
form distributions over L and X\L are computationally indistinguishable. Define
the density of L as ρ = |L|/|X|. When ρ is negligible, UL ≈c UX\L is equivalent
to UL ≈c UX in that UX\L and UX are statistically close. When ρ is known,
UL ≈c UX\L implies UL ≈c UX since one can efficiently reconstruct UX from
UL, UX\L and ρ.

To demonstrate the generality of ASMP, we instantiate it based the DDH,
d-linear, QR and DCR assumptions respectively. Due to space limit, we defer
the instantiations to the full version.

Remark 3. ASMP could also be thought as an enhancement of subgroup mem-
bership problems with requirement (2). For our application in this work, require-
ment (2) could be further relaxed to H contains a cyclic subgroup.

Comparison to (refined) subgroup indistinguishability problems.
Brakerski and Goldwasser [BG10] introduced the so called subgroup indistin-
guishability problems (SIPs). SIPs is also defined w.r.t. a finite Abelian group X
and a subgroup L. In addition, SIPs require X is isomorphic to direct product
of two groups: X 
 L × M and gcd(ord(L), ord(M)) = 1. Qin and Liu [QL14]
introduced refined SIPs, which further requires M to be cyclic. Compared to
(refined) SIPs, ASMPs only require the quotient group X /L to be cyclic. There-
fore, ASMP is strictly stronger than RSIP, and also arguably stronger than SIP
because SIP is unlikely to be implied by the DDH and d-linear problems. Corre-
spondingly, our algebraic subset membership assumption is potentially weaker.

Now we are ready to construct ABO-RLF from HPS for ASMP.
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– Setup(λ): run HPS.Setup(λ) to generate pp = (X,L,W,R, PK, SK,α,Π,Λ),
pick a random generator aL for the quotient group H, output p̂p = (pp, a).

– Gen(p̂p, b∗): on input p̂p = (pp, a) and a given lossy branch b∗ ∈ Zp, run
(x,w) ← HPS.SampYes(pp) to sample a random element from L, compute
the evaluation key ek = −b∗a + x ∈ X.

– Eval(ek, b, sk): on input an evaluation key ek = −b∗a + x, a branch b and an
input sk, compute α(sk)||Λsk(ek + ba). This algorithm defines fek,b(sk) :=
α(sk)||Λsk(ek + ba).

Theorem 1. Assume X = {0, 1}n and the function fx(sk) = α(sk)||Λx(sk)
is a ν-regular for any x /∈ L. The above construction yields a collection of
(ν, log |Imgα|)-ABO-RLFs under the algebraic subset membership problem.

Proof. By the group property of the ASMP, ek + ba = x + (b − b∗)a /∈ L as
long as b �= b∗. In this case, fek,b(·) is a ν-regular function. When b = b∗,
ek + ba = x + (b − b∗)a = x ∈ L. In this case, fek,b(·) is a lossy function
by the projective property. For the security, the hidden lossy branch property
follows readily from the subgroup membership problem. For any b∗

0, b
∗
1 ∈ Zp,

(−b∗
0a + x) ≡c (−b∗

0a + u) ≡ u ≡ (−b∗
1a + u) ≡c (−b∗

1a + x), where u
R←− X. This

proves the theorem. 	


6 Leakage-Resilient One-Way Functions

We now show LFs implies a family of leakage-resilient OWFs. The construction
and security proof are in the same spirit of the implication LTFs ⇒ injective
TDFs given in [PW08]. We prove the implication also holds in the leakage setting.

Theorem 2. Suppose (Setup,GenInj,GenLossy,Eval) give a collection of lossy
functions over {0, 1}n whose the image size of functions in the lossy mode is at
most 2τ . Then (Setup,GenInj,Eval) is a collection of �-leakage-resilient injective
OWFs over {0, 1}n for any � ≤ n − τ − ω(λ).

Due to space limit, we defer to proof to the full version.

7 Leakage-Resilient Message Authentication Code

In this section, we construct leakage-resilient MAC from ABO-RLFs and OT-
RLFs, respectively.

7.1 Construction from ABO Regularly Lossy Functions

We show how to convert an ABO-RLF to a MAC. The high-level idea is treating
input as secret key and branch as message, outputting the function value as tag.
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– Setup(λ): run ABORLF.Setup(λ) to generate pp = (EK,B,X, Y ) where
|X| = 2n and B = {0, 1}b, generate ek ← ABORLF.Gen(pp, 0b), output
p̂p = (pp, ek). The key space K = X, the message space M = B and the tag
space T = Y .

– Gen(p̂p): pick k
R←− X as the secret key.

– Tag(k,m): compute t ← fek,m(k), output (m, t).
– Vefy(k,m, t): output 1 if t = fek,m(k) and 0 otherwise.

Theorem 3. If ABORLF is a collection of (ν, τ)-ABO-RLFs, the above con-
struction is �-leakage-resilient selectively one-time sUF as long as ω(log λ) ≤
n − τ − � − log ν.

Due to space limit, we defer the proof to the full version.

8 Leakage-Resilient CCA-secure KEM

Our starting point is the work of Qin and Liu [QL13]. By combining a universal
HPS and an OT-LF in a clever manner, they obtained a simple and efficient
leakage-resilient CCA-secure PKE scheme with higher leakage rate than previous
constructions based on HPS [NS09,LWZ13].

To better illustrate our idea, we first briefly review their construction and
security proof. Their construction can be divided in two steps. In the first step,
they followed the approach of [NS09] to build a LR CPA-secure PKE from a
universal1-HPS. The first part ciphertext is (x, s, z = ext(π, s) + m), where x
is a random element in L with witness w, s is a random seed for randomness
extractor ext, m is the message, and π = HPS.Pub(pk, x, w). In the second
step, they employed an OT-LF fek,·(·) to generate a randomized tag to authen-
ticate the first part ciphertext. The second part ciphertext is (bc, t), where bc

is randomly chosen core branch, x||s||z serves as the auxiliary branch ba, and
t = fek,bc||ba(k). This differs from previous (leakage-resilient) CCA-secure PKE
constructions which use an independent universal2 HPS to authenticate the first
part ciphertext, and eventually allows high leakage ratio.

To establish security, the challenge ciphertext c∗ = (x∗, s∗, z∗, b∗
c , t

∗) evolves
via a sequence of hybrids. In the last hybrid, x∗ is sampled from X\L and t∗

is evaluated via a lossy core branch b∗
c ← OTLF.SampLossy(td, b∗

a = x∗||s∗||z∗).
No PPT adversary can tell the changes due to the hardness of subset member-
ship problem and the indistinguishability of lossy branches and injective ones.
Conditioned on c∗, it is possible that π∗ = HPS.Priv(sk, x∗) maintains high
min-entropy by proper parameter choice of ext and the fact that t∗ is evaluated
under a lossy branch. On one hand, when a PPT adversary makes decryption
queries, fek,(bc,ba)(·) is an injective function with overwhelming probability due
to the evasiveness of OT-LF, and thus the resulting t maintains the min-entropy
of its input. According to the universal property of HPS and the fact that t∗

is evaluated under a lossy branch, Λsk(x) has high average min-entropy when
x /∈ L even after exposing c∗. Thereby, the reduction can safely reject all invalid
decryption queries with x /∈ L. On the other hand, due to the projection of
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Λsk, the responses to all valid decryption queries do not reveal more informa-
tion about sk other than pk and c∗. In summary, the decryption oracle does not
reveal more information of π∗ to the adversary. Upon the this point, ext can be
used to distill the leftover entropy from π∗ as the session key to mask m.

From both theoretic and practical interest, KEM is more preferable than
PKE. In Qin-Liu’s PKE, the auxiliary branch ba is of the from (x, s, z). During
the security proof, z∗ = m∗ + ext(π∗, s∗) cannot be determined by the reduction
in advance, in that m∗ is one of the two messages outputted by the adversary in
the challenge stage. Thereby, the reduction is unable to decide the lossy branch
at the very beginning, but has to generate it with the help of trapdoor on-the-fly.
In contrast, in the KEM setting the reduction has fully control of the challenge
ciphertext c∗ = (x∗, s∗), which could be programmed as the lossy branch before
the generation of evaluation key. Thereby, the agility of OT-LF is overkilled
and its static version – ABO-LF suffices. Moreover, we note that both OT-LF
and ABO-LF act as a leakage-resilient MAC in the construction. Combining
this observation with the implication we have shown in Sect. 7, a HPS and an
ABO-RLF suffice for the construction of leakage-resilient CCA-secure KEM.

Next, we formally show how to construct leakage-resilient CCA-secure KEM
from HPS and ABO-RLF. We first recall the notion of HPS [CS02] as below.

Hash Proof System. A HPS consists of the following algorithms:

– Setup(λ): on input a security parameter λ, output public parameter pp =
(X,L,W,R, PK, SK,α,Π,Λ). Here X is a finite non-empty set, L is a proper
subset of X defined by binary relation R ⊂ X × W such that x ∈ L if and
only if (x,w) ∈ R for some witness w ∈ W . Here PK is the public key space,
SK is the secret key space, α : SK → PK is a projective map, Π is the proof
space, Λ = {Λsk : X → Π}sk∈SK is a family of hash functions indexed by
SK.

– SampYes(pp): on input pp, outputs a random element x ∈ L, together with a
witness w ∈ W for x. We refer to elements belong to L as Yes instances.

– SampNo(pp): on input pp, output a random element x ∈ X\L. We refer to
elements belong to X\L as No instances.

– KeyGen(pp): on input pp, pick sk
R←− SK, compute pk ← α(sk), output a key

pair (pk, sk).
– Priv(sk, x): on input sk and x ∈ X, output its hash proof π ← Λsk(x).
– Pub(pk, x, w): on input pk, x ∈ L together with a witness w, output π ∈ Π.

Subset membership problem. Cramer and Shoup [CS02] introduced the
subset membership problems (SMP) to abstract natural cryptographic indis-
tinguishability problems such as the DDH and QR problems as well as others.

SMP w.r.t. (X,L,W,R) requires the random distributions over L and X\L
are computationally indistinguishable, i.e., for any PPT adversary A, we have:

Advsmp
A (λ) = |Pr[A(pp, x0)] − Pr[A(pp, x1)]| ≤ negl(λ)

where pp ← Gen(λ), (x0, w) ← SampYes(pp), and x1 ← SampNo(pp).
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Projection. Λ is projective if the action of Λsk on L is determined by pk =
α(sk), i.e., for all (pk, sk) ← KeyGen(pp) and all x ∈ L with witness w, we have:

Λsk(x) = Pub(pk, x, w)

Universal1. Λ is ε1-universal1 if for all pk ∈ PK, all x ∈ X\L and all π ∈ Π,
we have:

Pr[Λsk(x) = π|(pk, x)] ≤ ε1

where the probability is over all possible sk with α(sk) = pk.
The lemma below follows directly from the definition of min-entropy.

Lemma 6. If Λ is ε1-universal1, then for all pk ∈ PK and x ∈ X\L, it holds
that H∞(Λsk(x)|(pk, x)) ≥ log 1/ε1, where sk ← SK with pk = α(sk).

8.1 Construction from HPS and ABO-RLF

Now, we show how to construct LR CCA-secure KEM from a universal1 HPS,
an ABO-RLF and randomness extractor. An overview of our construction is
depicted in Fig. 1

– Setup(λ):
run HPS.Setup(λ) to generate pp1 = (X,L,W,R, PK, SK,α,Π,Λ)7, where
Λ is ε1-universal1 for n = log 1/ε1; run ABORLF.Setup(λ) to generate
pp2 = (EK,B = X × {0, 1}d,Π, T ); pick an average-case (n − τ − �, k, ε2)-
extractor ext : Π × {0, 1}d → K where k = log |K|; output pp = (pp1, pp2).

– KeyGen(pp): parse pp = (pp1, pp2), then run (pk, sk) ← HPS.KeyGen(pp1)
and ek ← ABORLF.Gen(pp2, 0m+d), output public key p̂k = (pk, ek) and
secret key sk.

– Encaps(p̂k): on input p̂k = (pk, ek), sample (x,w) ← HPS.SampYes(pp1),
compute π ← HPS.Pub(pk, x, w), pick a random seed s

R←− {0, 1}d, compute
t ← fek,x||s(π), output c = (x, s, t) and k ← ext(π, s).

– Decaps(sk, c): on input sk and c = (x, s, t), compute π ← HPS.Priv(sk, x),
output k ← ext(π, s) if t = fek,x||s(π) and ⊥ otherwise.

Theorem 4. Assuming SMP is hard, HPS is an ε1-universal1 hash proof sys-
tem, ABORLF is a collection of (ν, τ)-ABO-RLFs and ext be an average-case
(n − τ − �, k, ε2)-strong extractor, the above construction is �-leakage-resilient
CCA-secure as long as ω(log λ) ≤ n − τ − � − k − log ν.

Due to space limit, we defer the proof to the full version.

Comparison. Compared to Qin-Liu’s PKE [QL13,QL14], our construction is
more efficient and conceptually simpler. Note that Qin-Liu’s PKE requires a
universal HPS and an OT-LF, while our construction requires a universal HPS

7 Assume each element in X can be uniquely encoded as a binary string in {0, 1}m.
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SampYes(pp1) → (x,w)
Pub(pk, x, w) → π

pk

Encaps

fek,x||s(π) → t
ext(π, s) → k

ek

k

x
π

Priv(sk, x) = π
fek,x||s(π) =?t

sk

k = ext(π, s) or ⊥

c = (x, s, t)

Decaps

Fig. 1. Our approach of KEM construction from HPS and ABORLF.

and an ABO-RLF. To date, the only known construction of OT-LF is from ABO-
LF and chameleon hash function. As we have shown in Sect. 4, ABO-RLFs admit
more efficient realizations than ABO-LFs. Moreover, as we have show in Sect. 5,
ABO-RLFs can be generically build from any HPS. This implication indicates
that our construction can be based solely on HPS, and help us to further reduce
the footprint of cryptographic code.
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